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Reductions 

• Computations of this form are called reductions 
 

• Produce single answer from collection via an associative operator 

– Examples: max, count, leftmost, rightmost, sum, … 

– Non-example: median 
 

• Recursive results don’t have to be single numbers or strings.  

They can be arrays or objects with multiple fields. 

– Example: Histogram of test results is a variant of sum 
 

• But some things are inherently sequential 

– How we process arr[i] may depend  

entirely on the result of processing arr[i-1] 



Maps and Data Parallelism 

• A map operates on each element of a collection independently to 

create a new collection of the same size 

– No combining results 

– For arrays, this is so trivial some hardware has direct support 
 

• Canonical example: Vector addition 

 

 

 

 

 

 

int[] vector_add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  result = new int[arr1.length]; 
  FORALL(i=0; i < arr1.length; i++) { 
    result[i] = arr1[i] + arr2[i]; 
  } 
  return result; 
} 
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Pack 

[Non-standard terminology, filter does not emphasize stability] 

 

Given an array input,  

produce an array output  

containing only elements such that f(elt) is true 

 

Example:  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

        f: is elt > 10 

        output [17, 11, 13, 19, 24] 

 

Parallelizable 

– Finding elements for the output is easy 

– But getting them in the right place seems hard 



Pack as Map, Parallel Prefix, Map 

1. Parallel map to compute a bit-vector for true elements 

input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1] 
 

2. Parallel-prefix sum on the bit-vector 

 bitsum [1,  1, 1, 1,  2, 2,  3,  4, 4,  5] 
 

3. Parallel map to produce the output 

 output [17, 11, 13, 19, 24] 

  

 

 

output = new array of size bitsum[n-1] 

FORALL(i=0; i < input.length; i++){ 

  if(bits[i]==1) 

    output[bitsum[i]-1] = input[i]; 

} 



Quicksort Review 

Recall quicksort was sequential, in-place, expected time O(n log n) 

 
         Best / expected case work 

1. Pick a pivot element    O(1) 

2. Partition all the data into:        O(n) 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

3. Recursively sort A and C                              2T(n/2) 

 

How should we parallelize this? 

 



Quicksort 

 

 
 

Easy: Do the two recursive calls in parallel 

• Work: unchanged O(n log n) 

• Span: T(n) = O(n) + T(n/2) = O(n) + O(n/2) + T(n/4) = O(n) 

• So parallelism is O(log n) (i.e., work / span) 

 

 

         Best / expected case work 

1. Pick a pivot element    O(1) 

2. Partition all the data into:        O(n) 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 

3. Recursively sort A and C                              2T(n/2) 



Doing Better 

• O(log n) speed-up with infinite number of processors is okay, 

but a bit underwhelming 

– Sort 109 elements 30 times faster 

 

• Google searches strongly suggest quicksort cannot do better 

because the partition cannot be parallelized 

– The Internet has been known to be wrong 

– But we need auxiliary storage (will no longer in place) 

– In practice, constant factors may make it not worth it,  

but remember Amdahl’s Law and the long-term situation 

 

• Already have everything we need to parallelize the partition 



Parallel Partition with Auxiliary Storage 

• This is just two packs 

– We know a pack is O(n) work, O(log n) span 

– Pack elements less than pivot into left side of aux array  

– Pack elements greater than pivot into right size of aux array 

– Put pivot between them and recursively sort 

– With a little more cleverness, can do both packs at once  

• But no effect on asymptotic complexity 
 

 Partition all the data into:        

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 



Analysis 

With O(log n) span for partition, the total span for quicksort is

 T(n) = O(log n) + T(n/2)  

         = O(log n) + O(log n/2) + T(n/4) 

          = O(log n) + O(log n/2) + O(log n/4) + T(n/8) 

  … 

  = O(log2 n) 

 

 

So parallelism (work / span) is O(n / log n) 



Example 

• Step 1: pick pivot as median of three 

8 1 4 9 0 3 5 2 7 6 

• Steps 2a and 2c (combinable):  

pack less than and pack greater than into a second array 

– Fancy parallel prefix to pull this off not shown 

  
1 4 0 3 5 2   

1 4 0 3 5 2 6 8 9 7 

• Step 3: Two recursive sorts in parallel 

– Can sort back into original array (swapping like in mergesort) 



Mergesort 

Recall mergesort: sequential, not-in-place, worst-case O(n log n) 

       

1. Sort left half and right half      2T(n/2) 

2. Merge results       O(n) 

Just like quicksort, doing the two recursive sorts in parallel changes 

the recurrence for the span to T(n) = O(n) + 1T(n/2) = O(n) 

• Again, parallelism is O(log n) 

• To do better, need to parallelize the merge 

– The trick this time will not use parallel prefix 



Parallelizing the Merge 

Need to merge two sorted subarrays (may not have the same size) 

 

 

 
0 1 4 8 9 2 3 5 6 7 

Idea: Suppose the larger subarray has n elements.  In parallel: 

• merge the first n/2 elements of the larger half  

with the “appropriate” elements of the smaller half 

• merge the second n/2 elements of the larger half  

with the remainder of the smaller half 

 

 

 



Parallelizing the Merge 
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Parallelizing the Merge 

0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half: 

 



Parallelizing the Merge 

0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half:  O(1) to compute middle index 

 

 



Parallelizing the Merge 

0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half:  O(1) to compute middle index 

2. Find how to split the smaller half at the same value:  

 

 



Parallelizing the Merge 
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1. Get median of bigger half:  O(1) to compute middle index 

2. Find how to split the smaller half at the same value:  
O(log n) to do binary search on the sorted small half 

 

 



Parallelizing the Merge 

0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half:  O(1) to compute middle index 

2. Find how to split the smaller half at the same value: 
O(log n) to do binary search on the sorted small half 

3. Size of two sub-merges conceptually splits output array: O(1) 

 

 



Parallelizing the Merge 

0 4 6 8 9 1 2 3 5 7 

1. Get median of bigger half:  O(1) to compute middle index 

2. Find how to split the smaller half at the same value: 
 O(log n) to do binary search on the sorted small half 

3. Size of two sub-merges conceptually splits output array: O(1) 

4. Do two submerges in parallel 

 

0 1 2 3 4 5 6 7 8 9 

lo hi 



The Recursion 

0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

 

When we do each merge in parallel,  

we split the bigger array in half, 

and use binary search to split the smaller array, 

in base case we do the copy 

 

7 6 8 9 

0 5 1 2 3 4 8 6 7 9 

… 



Analysis 

• Sequential recurrence for mergesort: 

T(n) = 2T(n/2) + O(n) which is O(nlogn) 

 

• Doing the two recursive calls in parallel but a sequential merge: 

work: same as sequential    span: T(n)=1T(n/2)+O(n) which is O(n) 

 

• Parallel merge makes work and span harder to compute 

– Each merge step does an extra O(log n)  

binary search to find how to split the smaller subarray 

– To merge n elements total,  

do two smaller merges of possibly different sizes 

– But worst-case split is (1/4)n and (3/4)n 

• When subarrays same size and “smaller” splits “all” / “none” 

 



Analysis 

For just a parallel merge of n elements: 

• Span is T(n) = T(3n/4) + O(log n), which is O(log2 n) 

• Work is T(n) = T(3n/4) + T(n/4) + O(log n) which is O(n) 

• Neither bound is immediately obvious, but “trust us” 

 

So for mergesort with parallel merge overall: 

• Span is T(n) = 1T(n/2) + O(log2 n), which is O(log3 n) 

• Work is T(n) = 2T(n/2) + O(n), which is O(n log n) 

 

So parallelism (work / span) is O(n / log2 n) 

– Not quite as good as quicksort’s O(n / log n) 

• But worst-case guarantee 

– And as always this is just the asymptotic result 



Toward Sharing Resources 

Have been studying parallel algorithms using fork-join 

– Lower span via parallel tasks 

 

Algorithms all had a very simple structure to avoid race conditions 

– Each thread had memory “only it accessed” 

• Example: array sub-range 

– Or used fork and join as contract for who “had” memory 

• On fork, “loan” some memory to “forkee” and do not 

access that memory again until after join on the “forkee” 

 

Strategy will not work well when: 

– Memory accessed by threads is overlapping or unpredictable 

– Threads are doing independent tasks needing access to same 

resources (as opposed to implementing the same algorithm) 

 



Concurrent Programming 

Concurrency:  

Correctly and efficiently managing access to shared resources from 

multiple possibly-simultaneous clients 

 

Requires coordination, particularly synchronization to avoid 

 incorrect simultaneous access: make somebody block 

– join is not what we want 

– Want to block until another thread is “done with what we need”, 

not the more extreme “until completely done executing” 

 

Even correct concurrent applications are usually highly  

non-deterministic: how threads are scheduled affects  

what each thread sees in its different operations 

– non-repeatability complicates testing and debugging 



Examples 

Multiple threads: 

 

1. Processing different bank-account operations 

– What if 2 threads change the same account at the same time? 

 

2. Using a shared cache of recent files (e.g., hashtable)  

– What if 2 threads insert the same file at the same time? 

 

3. Creating a pipeline with a queue for handing work to next thread 

in sequence (i.e., a virtual assembly line)? 

– What if enqueuer and dequeuer  

adjust a circular array queue at the same time? 



Why Threads? 

Unlike parallelism, not about implementing algorithms faster 

 

But threads still useful for: 
 

• Code structure for responsiveness 

– Respond to GUI events in one thread while another thread is 

performing an expensive computation 
 

• Processor utilization (mask I/O latency) 

– If 1 thread “goes to disk,” have something else to do 
 

• Failure isolation 

– Convenient structure if want to interleave multiple tasks and 

do not want an exception in one to stop the other 

 


