
CSE332: Data Abstractions

Lecture 18: Parallel Sort

James Fogarty

Winter 2012

Including slides developed in part by

Ruth Anderson, James Fogarty, Dan Grossman

Reductions

• Computations of this form are called reductions

• Produce single answer from collection via an associative operator

– Examples: max, count, leftmost, rightmost, sum, …

– Non-example: median

• Recursive results don’t have to be single numbers or strings.

They can be arrays or objects with multiple fields.

– Example: Histogram of test results is a variant of sum

• But some things are inherently sequential

– How we process arr[i] may depend

entirely on the result of processing arr[i-1]

Maps and Data Parallelism

• A map operates on each element of a collection independently to

create a new collection of the same size

– No combining results

– For arrays, this is so trivial some hardware has direct support

• Canonical example: Vector addition

int[] vector_add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 result = new int[arr1.length];
 FORALL(i=0; i < arr1.length; i++) {
 result[i] = arr1[i] + arr2[i];
 }
 return result;
}

Parallel Prefix

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7.8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

0

0

0

0

36

10 36 66 6 26 52 68

10 66

36

Pack

[Non-standard terminology, filter does not emphasize stability]

Given an array input,

produce an array output

containing only elements such that f(elt) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

 f: is elt > 10

 output [17, 11, 13, 19, 24]

Parallelizable

– Finding elements for the output is easy

– But getting them in the right place seems hard

Pack as Map, Parallel Prefix, Map

1. Parallel map to compute a bit-vector for true elements

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector

 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output

 output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]

FORALL(i=0; i < input.length; i++){

 if(bits[i]==1)

 output[bitsum[i]-1] = input[i];

}

Quicksort Review

Recall quicksort was sequential, in-place, expected time O(n log n)

 Best / expected case work

1. Pick a pivot element O(1)

2. Partition all the data into: O(n)

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

How should we parallelize this?

Quicksort

Easy: Do the two recursive calls in parallel

• Work: unchanged O(n log n)

• Span: T(n) = O(n) + T(n/2) = O(n) + O(n/2) + T(n/4) = O(n)

• So parallelism is O(log n) (i.e., work / span)

 Best / expected case work

1. Pick a pivot element O(1)

2. Partition all the data into: O(n)

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Doing Better

• O(log n) speed-up with infinite number of processors is okay,

but a bit underwhelming

– Sort 109 elements 30 times faster

• Google searches strongly suggest quicksort cannot do better

because the partition cannot be parallelized

– The Internet has been known to be wrong

– But we need auxiliary storage (will no longer in place)

– In practice, constant factors may make it not worth it,

but remember Amdahl’s Law and the long-term situation

• Already have everything we need to parallelize the partition

Parallel Partition with Auxiliary Storage

• This is just two packs

– We know a pack is O(n) work, O(log n) span

– Pack elements less than pivot into left side of aux array

– Pack elements greater than pivot into right size of aux array

– Put pivot between them and recursively sort

– With a little more cleverness, can do both packs at once

• But no effect on asymptotic complexity

 Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

Analysis

With O(log n) span for partition, the total span for quicksort is

 T(n) = O(log n) + T(n/2)

 = O(log n) + O(log n/2) + T(n/4)

 = O(log n) + O(log n/2) + O(log n/4) + T(n/8)

 …

 = O(log2 n)

So parallelism (work / span) is O(n / log n)

Example

• Step 1: pick pivot as median of three

8 1 4 9 0 3 5 2 7 6

• Steps 2a and 2c (combinable):

pack less than and pack greater than into a second array

– Fancy parallel prefix to pull this off not shown

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

• Step 3: Two recursive sorts in parallel

– Can sort back into original array (swapping like in mergesort)

Mergesort

Recall mergesort: sequential, not-in-place, worst-case O(n log n)

1. Sort left half and right half 2T(n/2)

2. Merge results O(n)

Just like quicksort, doing the two recursive sorts in parallel changes

the recurrence for the span to T(n) = O(n) + 1T(n/2) = O(n)

• Again, parallelism is O(log n)

• To do better, need to parallelize the merge

– The trick this time will not use parallel prefix

Parallelizing the Merge

Need to merge two sorted subarrays (may not have the same size)

0 1 4 8 9 2 3 5 6 7

Idea: Suppose the larger subarray has n elements. In parallel:

• merge the first n/2 elements of the larger half

with the “appropriate” elements of the smaller half

• merge the second n/2 elements of the larger half

with the remainder of the smaller half

Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half:

Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value:

Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value:
O(log n) to do binary search on the sorted small half

Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value:
O(log n) to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: O(1)

Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value:
 O(log n) to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: O(1)

4. Do two submerges in parallel

0 1 2 3 4 5 6 7 8 9

lo hi

The Recursion

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

When we do each merge in parallel,

we split the bigger array in half,

and use binary search to split the smaller array,

in base case we do the copy

7 6 8 9

0 5 1 2 3 4 8 6 7 9

…

Analysis

• Sequential recurrence for mergesort:

T(n) = 2T(n/2) + O(n) which is O(nlogn)

• Doing the two recursive calls in parallel but a sequential merge:

work: same as sequential span: T(n)=1T(n/2)+O(n) which is O(n)

• Parallel merge makes work and span harder to compute

– Each merge step does an extra O(log n)

binary search to find how to split the smaller subarray

– To merge n elements total,

do two smaller merges of possibly different sizes

– But worst-case split is (1/4)n and (3/4)n

• When subarrays same size and “smaller” splits “all” / “none”

Analysis

For just a parallel merge of n elements:

• Span is T(n) = T(3n/4) + O(log n), which is O(log2 n)

• Work is T(n) = T(3n/4) + T(n/4) + O(log n) which is O(n)

• Neither bound is immediately obvious, but “trust us”

So for mergesort with parallel merge overall:

• Span is T(n) = 1T(n/2) + O(log2 n), which is O(log3 n)

• Work is T(n) = 2T(n/2) + O(n), which is O(n log n)

So parallelism (work / span) is O(n / log2 n)

– Not quite as good as quicksort’s O(n / log n)

• But worst-case guarantee

– And as always this is just the asymptotic result

Toward Sharing Resources

Have been studying parallel algorithms using fork-join

– Lower span via parallel tasks

Algorithms all had a very simple structure to avoid race conditions

– Each thread had memory “only it accessed”

• Example: array sub-range

– Or used fork and join as contract for who “had” memory

• On fork, “loan” some memory to “forkee” and do not

access that memory again until after join on the “forkee”

Strategy will not work well when:

– Memory accessed by threads is overlapping or unpredictable

– Threads are doing independent tasks needing access to same

resources (as opposed to implementing the same algorithm)

Concurrent Programming

Concurrency:

Correctly and efficiently managing access to shared resources from

multiple possibly-simultaneous clients

Requires coordination, particularly synchronization to avoid

 incorrect simultaneous access: make somebody block

– join is not what we want

– Want to block until another thread is “done with what we need”,

not the more extreme “until completely done executing”

Even correct concurrent applications are usually highly

non-deterministic: how threads are scheduled affects

what each thread sees in its different operations

– non-repeatability complicates testing and debugging

Examples

Multiple threads:

1. Processing different bank-account operations

– What if 2 threads change the same account at the same time?

2. Using a shared cache of recent files (e.g., hashtable)

– What if 2 threads insert the same file at the same time?

3. Creating a pipeline with a queue for handing work to next thread

in sequence (i.e., a virtual assembly line)?

– What if enqueuer and dequeuer

adjust a circular array queue at the same time?

Why Threads?

Unlike parallelism, not about implementing algorithms faster

But threads still useful for:

• Code structure for responsiveness

– Respond to GUI events in one thread while another thread is

performing an expensive computation

• Processor utilization (mask I/O latency)

– If 1 thread “goes to disk,” have something else to do

• Failure isolation

– Convenient structure if want to interleave multiple tasks and

do not want an exception in one to stop the other

