

CSE332: Data Abstractions

Lecture 17: Parallel Analysis and Parallel Prefix

James Fogarty Winter 2012

Including slides developed in part by Ruth Anderson, James Fogarty, Dan Grossman

Work and Span in the DAG

- fork and join execution can be seen as a DAG
 - Nodes: Pieces of work
 - Edges: Source must finish before destination starts

- A fork "ends a node" and makes two outgoing edges
 - New thread
 - Continuation of current thread
- A join "ends a node" and makes a node with two incoming edges
 - Node just ended
 - Last node of thread joined on

Work and Span

Run-time costs are on the nodes, not on the edges

- Work: T_1 = sum of all nodes in the DAG
 - One processor has to do all the work
 - Any topological sort is a legal execution
- Span: T_{∞} = sum of all nodes on **most-expensive** path in the DAG
 - Can do everything that is ready, but still must wait for results
 - If all nodes are roughly equal cost, this is the **longest** path
 - Example: O(log n) for summing an array
 - Notice having > *n*/2 processors is no additional help

Let $\mathbf{T}_{\mathbf{P}}$ be the running time if there are \mathbf{P} processors available

More Definitions

- Speed-up on P processors: T₁ / T_P
- If speed-up is **P** as we vary **P**, we call it perfect linear speed-up
 - Perfect linear speed-up means doubling P halves running time
 - Usually our goal; hard to get in practice
- Parallelism is the maximum possible speed-up: T_1 / T_{∞}
 - At some point, adding processors will not help
 - What that point is depends on the span

Parallel algorithms are about decreasing span without increasing work ... or at least not increasing work too much ...

Optimal T_P

- So we know T_1 and T_{∞} but actually care about T_P (e.g., P=4)
- Ignoring memory-hierarchy issues, T_P cannot beat
 - T_1 / P why not?
 - $-\mathbf{T}_{\infty}$ why not?

• So an *asymptotically* optimal execution would be:

$$T_{P} = O((T_{1} / P) + T_{\infty})$$

First term dominates for small **P**, second for large **P**

Division of Responsibility

- Our job as users of a ForkJoin Framework:
 - Pick a good algorithm, write a program
 - When run, it creates a DAG of things to do
 - Make all nodes small-ish and approximately equal work
- The job of the framework developer:
 - Assign work to available processors to avoid idling
 - Keep constant factors low
 - Give the expected-time optimal guarantee

 $T_{P} = O((T_{1} / P) + T_{\infty})$

assuming framework-user did their job

- We will not study how the framework does this

What That Means: Mostly Good News

The fork-join framework guarantee:

 $T_{P} = O((T_{1} / P) + T_{\infty})$

- No implementation can beat $O(T_{\infty})$ by more than a constant factor
- No implementation on P processors can beat O(T₁ / P)
- So the framework on average gets within a constant factor of the best you can do, assuming framework user did their part correctly

You can focus on your algorithm, data structures, and cut-offs

Do not worry about number of processors and scheduling

• Analyze running time given T_1 , T_{∞} , and P

Examples

$T_{P} = O((T_{1} / P) + T_{\infty})$

- In the algorithms seen so far (e.g., sum an array):
 - $\mathbf{T}_1 = O(n)$
 - $\mathbf{T}_{\infty} = O(\log n)$
 - So expect (ignoring overheads): $T_P = O(n/P + \log n)$
- Suppose instead:
 - $T_1 = O(n^2)$
 - $-\mathbf{T}_{\infty} = O(n)$
 - So expect (ignoring overheads): $T_P = O(n^2/P + n)$

Amdahl's Law: Mostly Bad News

- We have analyzed a parallel program in terms of work and span
- In practice, it is common that your program has:

a) parts that **parallelize well**:

- Such as maps/reduces over arrays and trees
- b) ...and parts that **don't parallelize at all:**
- Such as reading a linked list, getting input, or just doing computations where each step needs the results of previous step
- These **unparallelized** parts can turn out to be a big bottleneck

Amdahl's Law: Mostly Bad News

Let the *work* be 1 unit time

Let S be the portion of the execution that cannot be parallelized

Suppose we get perfect linear speedup on the parallel portion

Then: $T_P = S + (1-S)/P$

So the overall speedup with P processors (this is Amdahl's Law): $T_1 / T_P = 1 / (S + (1-S)/P)$

And the parallelism is (with infinite processors):

 $T_1 / T_{\infty} = 1 / S$

Amdahl's Law Example

Suppose:

 $T_1 = S + (1-S) = 1$ (aka total program execution time) $T_1 = 1/3 + 2/3 = 1$ $T_1 = 33 \text{ sec} + 67 \text{ sec} = 100 \text{ sec}$

Time on P processors: $T_P = S + (1-S)/P$

So:

$$T_P = 33 \text{ sec} + (67 \text{ sec})/P$$

 $T_3 = 33 \text{ sec} + (67 \text{ sec})/3$
 $T_3 = 33 \text{ sec} + 22.33 \text{ sec} = 55.33 \text{ sec}$

Why Such Bad News?

 $T_1 / T_P = 1 / (S + (1-S)/P)$ $T_1 / T_{\infty} = 1 / S$

- Suppose 33% of a program is sequential
 Then a billion processors will not give a speedup over 3
- Suppose you miss the good old days where you could get 100x speedup by just waiting about 12 years
- Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
- For 256 processors to get at least 100x speedup, we need

 $100 \le 1 / (\mathbf{S} + (1 - \mathbf{S})/256)$

Which means $S \le .0061$ (i.e., 99.4% perfectly parallelizable)

Plots You Need to See

- 1. Assume 256 processors
 - x-axis: sequential portion **S**, ranging from .01 to .25
 - y-axis: speedup T₁ / T_P (will go down as S increases)
- 2. Assume S = .01 or .1 or .25 (three separate lines)
 - x-axis: number of processors **P**, ranging from 2 to 32
 - y-axis: speedup T₁ / T_P (will go up as P increases)

Do this as a homework problem!

- More practice with a spreadsheet or graphing program
- Compare against your intuition
- A picture is worth 1000 words, especially if you made it

All is Not Lost

Amdahl's Law is a harsh reality

- But it does not mean additional processors are worthless
- We can find new parallel algorithms
 - Some things that seem sequential are actually parallelizable
- We can change the problem or do new things
 - Video games use tons of parallel processors
 - They are not rendering 10-year-old graphics faster
 - They are rendering better monsters, better scenery

Moore and Amdahl

- Moore's "Law" is an observation about the progress of the semiconductor industry
 - Transistor density doubles roughly every 18 months
- Amdahl's Law is a mathematical theorem
 - Implies diminishing returns of adding more processors
- Both are incredibly important in designing computer systems

Moving Forward

Done:

- Simple ways to use parallelism for counting, summing, finding
- Analysis of running time and implications of Amdahl's Law

Now:

- Clever ways to parallelize more than is intuitively possible
- Parallel prefix:
 - This "key trick" typically underlies surprising parallelization
 - Enables other things like packs
- Parallel sorting: mergesort and quicksort (though not in place)
 - Easy to get a little parallelism
 - With cleverness can get a lot of parallelism

The Prefix-Sum Problem

Given int[] input, produce int[] output where:

output[i] is the sum of input[0]+input[1]+...+input[i]

Sequential can be a CS1 exam problem:

```
int[] prefix_sum(int[] input){
    int[] output = new int[input.length];
    output[0] = input[0];
    for(int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}</pre>
```

Does not seem parallelizable

• Work: *O*(*n*), Span: *O*(*n*)

This *algorithm* is sequential, but a *different algorithm* has

• Work: O(*n*), Span: O(log *n*)

Parallel Prefix-Sum

- The parallel-prefix algorithm does two passes
 - Each pass has O(n) work and $O(\log n)$ span
 - So in total there is O(n) work and $O(\log n)$ span
 - So just like with array summing, parallelism is $n / \log n$
 - An exponential speedup
- The first pass builds a tree bottom-up: the "up" pass
- The second pass traverses the tree top-down: the "down" pass

Historical note:

Original algorithm due to R. Ladner and M. Fischer at the University of Washington in 1977

The Algorithm: Part 1

- 1. Up: Build a binary tree where
 - Root has sum of the range [x, y]
 - If a node has sum of [lo,hi) and hi>lo,
 - Left child has sum of [lo,middle)
 - Right child has sum of [middle,hi)
 - A leaf has sum of [i,i+1) i.e., input[i]

This is an easy fork-join computation:

combine results by actually building a binary tree with the range-sums

- Tree built bottom-up in parallel
- Could be more clever in an array, as we were with heaps

Analysis: O(n) work, O(log n) span

The Algorithm: Part 2

- 2. Down: Pass down a value **fromLeft**
 - Root given a fromLeft of 0
 - Node takes its fromLeft value and
 - Passes its left child
 - the same fromLeft
 - Passes its right child
 - its **fromLeft** plus its left child's **sum** (stored in part 1)
 - At the leaf for array position i,
 output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result

- Leaves assign to output
- Invariant: fromLeft is sum of elements left of the node's range

Analysis: O(n) work, O(log n) span

Sequential Cut-Off

Adding a sequential cut-off is easy as always:

• Up:

just a sum, have leaf node hold the sum of a range

• Down:

output[lo] = fromLeft + input[lo]; for(i=lo+1; i < hi; i++) output[i] = output[i-1] + input[i]

Generalizing Parallel Prefix

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that can be used in many problems

- Minimum, maximum of all elements to the left of i
- Is there an element to the left of *i* satisfying some property?
- Count of elements to the left of i satisfying some property
 - This last one is perfect for an efficient parallel pack
 - Perfect for building on top of the "parallel prefix trick"

[Non-standard terminology, filter does not emphasize stability]

Given an array input, produce an array output containing only elements such that f(elt) is true

```
Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: is elt > 10
output [17, 11, 13, 19, 24]
```

Parallelizable

- Finding elements for the output is easy
- But getting them in the right place seems hard

Parallel Map, Parallel Prefix, Parallel Map

- Parallel map to compute a bit-vector for true elements input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]
- 2. Parallel-prefix sum on the bit-vector bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]
- 3. Parallel map to produce the output output [17, 11, 13, 19, 24]

```
output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++) {
    if(bits[i]==1)
        output[bitsum[i]-1] = input[i];
}</pre>
```

Pack Comments

- First two steps can be combined into one pass
 - Use a different base case for the prefix sum
 - No effect on asymptotic complexity
- Can also combine third step into the down pass of the prefix sum
 - Again no effect on asymptotic complexity
- Analysis: O(n) work, $O(\log n)$ span
 - Multiple passes, but this is a constant
- Parallelized packs will help us parallelize quicksort