
CSE332: Data Abstractions

Lecture 17: Parallel Analysis and Parallel Prefix

James Fogarty

Winter 2012

Including slides developed in part by

Ruth Anderson, James Fogarty, Dan Grossman

Work and Span in the DAG

• fork and join execution can be seen as a DAG

– Nodes: Pieces of work

– Edges: Source must finish before destination starts

• A fork “ends a node” and makes

two outgoing edges

• New thread

• Continuation of current thread

• A join “ends a node” and makes

a node with two incoming edges

• Node just ended

• Last node of thread joined on

Work and Span

Run-time costs are on the nodes, not on the edges

• Work: T1 = sum of all nodes in the DAG

– One processor has to do all the work

– Any topological sort is a legal execution

• Span: T = sum of all nodes on most-expensive path in the DAG

– Can do everything that is ready, but still must wait for results

– If all nodes are roughly equal cost, this is the longest path

– Example: O(log n) for summing an array

• Notice having > n/2 processors is no additional help

Let TP be the running time if there are P processors available

More Definitions

• Speed-up on P processors: T1 / TP

• If speed-up is P as we vary P, we call it perfect linear speed-up

– Perfect linear speed-up means doubling P halves running time

– Usually our goal; hard to get in practice

• Parallelism is the maximum possible speed-up: T1 / T 

– At some point, adding processors will not help

– What that point is depends on the span

Parallel algorithms are about decreasing span without increasing work

 … or at least not increasing work too much …

Optimal TP

• So we know T1 and T  but actually care about TP (e.g., P=4)

• Ignoring memory-hierarchy issues, TP cannot beat

– T1 / P why not?

– T  why not?

• So an asymptotically optimal execution would be:

TP = O((T1 / P) + T )

First term dominates for small P, second for large P

Division of Responsibility

• Our job as users of a ForkJoin Framework:

– Pick a good algorithm, write a program

– When run, it creates a DAG of things to do

– Make all nodes small-ish and approximately equal work

• The job of the framework developer:

– Assign work to available processors to avoid idling

– Keep constant factors low

– Give the expected-time optimal guarantee

 TP = O((T1 / P) + T )

assuming framework-user did their job

– We will not study how the framework does this

What That Means: Mostly Good News

The fork-join framework guarantee:

 TP = O((T1 / P) + T )

– No implementation can beat O(T ) by more than a constant factor

– No implementation on P processors can beat O(T1 / P)

– So the framework on average gets within a constant factor of the

best you can do, assuming framework user did their part correctly

You can focus on your algorithm, data structures, and cut-offs

Do not worry about number of processors and scheduling

• Analyze running time given T1, T , and P

Examples

TP = O((T1 / P) + T )

• In the algorithms seen so far (e.g., sum an array):

– T1 = O(n)

– T = O(log n)

– So expect (ignoring overheads): TP = O(n/P + log n)

• Suppose instead:

– T1 = O(n2)

– T = O(n)

– So expect (ignoring overheads): TP = O(n2/P + n)

Amdahl’s Law: Mostly Bad News

• We have analyzed a parallel program in terms of work and span

• In practice, it is common that your program has:

 a) parts that parallelize well:

– Such as maps/reduces over arrays and trees

b) …and parts that don’t parallelize at all:

– Such as reading a linked list, getting input, or just doing

computations where each step needs the results of previous step

• These unparallelized parts can turn out to be a big bottleneck

Amdahl’s Law: Mostly Bad News

Let the work be 1 unit time

Let S be the portion of the execution that cannot be parallelized

Then: T1 = S + (1-S) = 1

Suppose we get perfect linear speedup on the parallel portion

Then: TP = S + (1-S)/P

So the overall speedup with P processors (this is Amdahl’s Law):

T1 / TP = 1 / (S + (1-S)/P)

And the parallelism is (with infinite processors):

T1 / T = 1 / S

Amdahl’s Law Example

Suppose:

 T1 = S + (1-S) = 1 (aka total program execution time)

 T1 = 1/3 + 2/3 = 1

 T1 = 33 sec + 67 sec = 100 sec

Time on P processors: TP = S + (1-S)/P

So:

 TP = 33 sec + (67 sec)/P

 T3 = 33 sec + (67 sec)/3

 T3 = 33 sec + 22.33 sec = 55.33 sec

Why Such Bad News?

 T1 / TP = 1 / (S + (1-S)/P) T1 / T = 1 / S

• Suppose 33% of a program is sequential

– Then a billion processors will not give a speedup over 3

• Suppose you miss the good old days where you

could get 100x speedup by just waiting about 12 years

• Now suppose in 12 years,

clock speed is the same but you get 256 processors instead of 1

• For 256 processors to get at least 100x speedup, we need

 100  1 / (S + (1-S)/256)

Which means S  .0061 (i.e., 99.4% perfectly parallelizable)

Plots You Need to See

1. Assume 256 processors

– x-axis: sequential portion S, ranging from .01 to .25

– y-axis: speedup T1 / TP (will go down as S increases)

2. Assume S = .01 or .1 or .25 (three separate lines)

– x-axis: number of processors P, ranging from 2 to 32

– y-axis: speedup T1 / TP (will go up as P increases)

Do this as a homework problem!

– More practice with a spreadsheet or graphing program

– Compare against your intuition

– A picture is worth 1000 words, especially if you made it

All is Not Lost

Amdahl’s Law is a harsh reality

– But it does not mean additional processors are worthless

• We can find new parallel algorithms

– Some things that seem sequential are actually parallelizable

• We can change the problem or do new things

– Video games use tons of parallel processors

• They are not rendering 10-year-old graphics faster

• They are rendering better monsters, better scenery

Moore and Amdahl

• Moore’s “Law” is an observation about

the progress of the semiconductor industry

– Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem

– Implies diminishing returns of adding more processors

• Both are incredibly important in designing computer systems

Moving Forward

Done:

– Simple ways to use parallelism for counting, summing, finding

– Analysis of running time and implications of Amdahl’s Law

Now:

– Clever ways to parallelize more than is intuitively possible

– Parallel prefix:

• This “key trick” typically underlies surprising parallelization

• Enables other things like packs

– Parallel sorting: mergesort and quicksort (though not in place)

• Easy to get a little parallelism

• With cleverness can get a lot of parallelism

The Prefix-Sum Problem

Given int[] input, produce int[] output where:

 output[i] is the sum of input[0]+input[1]+…+input[i]

Sequential can be a CS1 exam problem:

int[] prefix_sum(int[] input){
 int[] output = new int[input.length];
 output[0] = input[0];
 for(int i=1; i < input.length; i++)
 output[i] = output[i-1]+input[i];
 return output;

}

Does not seem parallelizable

• Work: O(n), Span: O(n)

This algorithm is sequential, but a different algorithm has

• Work: O(n), Span: O(log n)

Parallel Prefix-Sum

• The parallel-prefix algorithm does two passes

– Each pass has O(n) work and O(log n) span

– So in total there is O(n) work and O(log n) span

– So just like with array summing, parallelism is n / log n

– An exponential speedup

• The first pass builds a tree bottom-up: the “up” pass

• The second pass traverses the tree top-down: the “down” pass

Historical note:

Original algorithm due to

R. Ladner and M. Fischer at the

University of Washington in 1977

Example

input

output

6 4 16 10 16 14 2 8

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7.8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

Example

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8

sum

fromleft

range 0,4

sum

fromleft

range 4,8

sum

fromleft

range 6,8

sum

fromleft

range 4,6

sum

fromleft

range 2,4

sum

fromleft

range 0,2

sum

fromleft

r 0,1

s

f

r 1,2

s

f

r 2,3

s

f

r 3,4

s

f

r 4,5

s

f

r 5,6

s

f

r 6,7

s

f

r 7.8

s

f
6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

0

0

0

0

36

10 36 66 6 26 52 68

10 66

36

The Algorithm: Part 1

1. Up: Build a binary tree where

– Root has sum of the range [x,y)

– If a node has sum of [lo,hi) and hi>lo,

• Left child has sum of [lo,middle)

• Right child has sum of [middle,hi)

• A leaf has sum of [i,i+1) i.e., input[i]

This is an easy fork-join computation:

combine results by actually building a binary tree with the range-sums

– Tree built bottom-up in parallel

– Could be more clever in an array, as we were with heaps

Analysis: O(n) work, O(log n) span

The Algorithm: Part 2
2. Down: Pass down a value fromLeft

– Root given a fromLeft of 0

– Node takes its fromLeft value and

• Passes its left child

– the same fromLeft

• Passes its right child

– its fromLeft plus its left child’s sum (stored in part 1)

– At the leaf for array position i,

output[i]=fromLeft+input[i]

This is an easy fork-join computation:

traverse the tree built in step 1 and produce no result

– Leaves assign to output

– Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(log n) span

Sequential Cut-Off

Adding a sequential cut-off is easy as always:

• Up:

 just a sum, have leaf node hold the sum of a range

• Down:

 output[lo] = fromLeft + input[lo];

 for(i=lo+1; i < hi; i++)

 output[i] = output[i-1] + input[i]

Generalizing Parallel Prefix

Just as sum-array was the simplest example of a common pattern,

prefix-sum illustrates a pattern that can be used in many problems

• Minimum, maximum of all elements to the left of i

• Is there an element to the left of i satisfying some property?

• Count of elements to the left of i satisfying some property

– This last one is perfect for an efficient parallel pack

– Perfect for building on top of the “parallel prefix trick”

Pack

[Non-standard terminology, filter does not emphasize stability]

Given an array input,

produce an array output

containing only elements such that f(elt) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

 f: is elt > 10

 output [17, 11, 13, 19, 24]

Parallelizable

– Finding elements for the output is easy

– But getting them in the right place seems hard

Parallel Map, Parallel Prefix, Parallel Map

1. Parallel map to compute a bit-vector for true elements

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]

bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector

 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output

 output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]

FORALL(i=0; i < input.length; i++){

 if(bits[i]==1)

 output[bitsum[i]-1] = input[i];

}

Pack Comments

• First two steps can be combined into one pass

– Use a different base case for the prefix sum

– No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum

– Again no effect on asymptotic complexity

• Analysis: O(n) work, O(log n) span

– Multiple passes, but this is a constant

• Parallelized packs will help us parallelize quicksort

