CSE332: Data Abstractions

Lecture 17: Parallel Analysis and Parallel Prefix

James Fogarty
Winter 2012

Including slides developed in part by
Ruth Anderson, James Fogarty, Dan Grossman
Work and Span in the DAG

• fork and join execution can be seen as a DAG
 – Nodes: Pieces of work
 – Edges: Source must finish before destination starts

• A fork “ends a node” and makes two outgoing edges
 • New thread
 • Continuation of current thread

• A join “ends a node” and makes a node with two incoming edges
 • Node just ended
 • Last node of thread joined on
Work and Span

Run-time costs are on the nodes, not on the edges

- **Work:** $T_1 = \text{sum of all nodes in the DAG}$
 - One processor has to do all the work
 - Any topological sort is a legal execution

- **Span:** $T_\infty = \text{sum of all nodes on most-expensive path in the DAG}$
 - Can do everything that is ready, but still must wait for results
 - If all nodes are roughly equal cost, this is the longest path
 - Example: $O(\log n)$ for summing an array
 - Notice having $> n/2$ processors is no additional help

Let T_P be the running time if there are P processors available
More Definitions

- **Speed-up** on \(P \) processors: \(T_1 / T_P \)

- If speed-up is \(P \) as we vary \(P \), we call it **perfect linear speed-up**
 - Perfect linear speed-up means doubling \(P \) halves running time
 - Usually our goal; hard to get in practice

- **Parallelism** is the maximum possible speed-up: \(T_1 / T_\infty \)
 - At some point, adding processors will not help
 - What that point is depends on the span

Parallel algorithms are about decreasing span without increasing work

… or at least not increasing work too much …
Optimal T_P

- So we know T_1 and T_∞ but actually care about T_P (e.g., $P=4$)

- Ignoring memory-hierarchy issues, T_P cannot beat
 - T_1 / P why not?
 - T_∞ why not?

- So an *asymptotically* optimal execution would be:
 $$T_P = O((T_1 / P) + T_\infty)$$

 First term dominates for small P, second for large P
Division of Responsibility

• Our job as users of a ForkJoin Framework:
 – Pick a good algorithm, write a program
 – When run, it creates a DAG of things to do
 – Make all nodes small-ish and approximately equal work

• The job of the framework developer:
 – Assign work to available processors to avoid idling
 – Keep constant factors low
 – Give the expected-time optimal guarantee

\[T_P = O\left(\frac{T_1}{P} + T_\infty\right) \]
assuming framework-user did their job

– We will not study how the framework does this
What That Means: Mostly Good News

The fork-join framework guarantee:

\[T_P = O((T_1 / P) + T_\infty) \]

- No implementation can beat \(O(T_\infty) \) by more than a constant factor
- No implementation on \(P \) processors can beat \(O(T_1 / P) \)
- So the framework on average gets within a constant factor of the best you can do, assuming framework user did their part correctly

You can focus on your algorithm, data structures, and cut-offs

Do not worry about number of processors and scheduling
 - Analyze running time given \(T_1, T_\infty, \) and \(P \)
Examples

\[T_P = O((T_1 / P) + T_\infty) \]

- In the algorithms seen so far (e.g., sum an array):
 - \(T_1 = O(n) \)
 - \(T_\infty = O(\log n) \)
 - So expect (ignoring overheads): \(T_P = O(n/P + \log n) \)

- Suppose instead:
 - \(T_1 = O(n^2) \)
 - \(T_\infty = O(n) \)
 - So expect (ignoring overheads): \(T_P = O(n^2/P + n) \)
Amdahl’s Law: Mostly Bad News

• We have analyzed a parallel program in terms of work and span

• In practice, it is common that your program has:

 a) parts that **parallelize well:**
 – Such as maps/reduces over arrays and trees

 b) …and parts that **don’t parallelize at all:**
 – Such as reading a linked list, getting input, or just doing computations where each step needs the results of previous step

• These **unparallelized** parts can turn out to be a big bottleneck
Amdahl’s Law: Mostly Bad News

Let the work be 1 unit time

Let S be the portion of the execution that cannot be parallelized

Then: \[T_1 = S + (1-S) = 1 \]

Suppose we get perfect linear speedup on the parallel portion

Then: \[T_P = S + (1-S)/P \]

So the overall speedup with P processors (this is Amdahl’s Law): \[\frac{T_1}{T_P} = \frac{1}{S + (1-S)/P} \]

And the parallelism is (with infinite processors): \[\frac{T_1}{T_\infty} = \frac{1}{S} \]
Amdahl’s Law Example

Suppose:

\[T_1 = S + (1-S) = 1 \] \text{(aka total program execution time)}
\[T_1 = \frac{1}{3} + \frac{2}{3} = 1 \]
\[T_1 = 33 \text{ sec} + 67 \text{ sec} = 100 \text{ sec} \]

Time on \(P \) processors: \[T_P = S + \frac{(1-S)}{P} \]

So:

\[T_P = 33 \text{ sec} + \frac{(67 \text{ sec})}{P} \]
\[T_3 = 33 \text{ sec} + \frac{(67 \text{ sec})}{3} \]
\[T_3 = 33 \text{ sec} + 22.33 \text{ sec} = 55.33 \text{ sec} \]
Why Such Bad News?

\[
\frac{T_1}{T_P} = \frac{1}{S + (1-S)/P} \quad \quad \quad \quad \frac{T_1}{T_\infty} = \frac{1}{S}
\]

- Suppose 33% of a program is sequential
 - Then a billion processors will not give a speedup over 3
- Suppose you miss the good old days where you could get 100x speedup by just waiting about 12 years
- Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
- For 256 processors to get at least 100x speedup, we need
 \[
 100 \leq \frac{1}{(S + (1-S)/256)}
 \]
 Which means \(S \leq 0.0061 \) (i.e., 99.4% perfectly parallelizable)
Plots You Need to See

1. Assume 256 processors
 - x-axis: sequential portion S, ranging from .01 to .25
 - y-axis: speedup T_1 / T_P (will go down as S increases)

2. Assume $S = .01$ or .1 or .25 (three separate lines)
 - x-axis: number of processors P, ranging from 2 to 32
 - y-axis: speedup T_1 / T_P (will go up as P increases)

Do this as a homework problem!
 - More practice with a spreadsheet or graphing program
 - Compare against your intuition
 - A picture is worth 1000 words, especially if you made it
All is Not Lost

Amdahl’s Law is a harsh reality
 – But it does not mean additional processors are worthless

• We can find new parallel algorithms
 – Some things that seem sequential are actually parallelizable

• We can change the problem or do new things
 – Video games use tons of parallel processors
 • They are not rendering 10-year-old graphics faster
 • They are rendering better monsters, better scenery
Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the semiconductor industry
 – Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem
 – Implies diminishing returns of adding more processors

• Both are incredibly important in designing computer systems
Moving Forward

Done:
- Simple ways to use parallelism for counting, summing, finding
- Analysis of running time and implications of Amdahl’s Law

Now:
- Clever ways to parallelize more than is intuitively possible
 - Parallel prefix:
 • This “key trick” typically underlies surprising parallelization
 • Enables other things like packs
 - Parallel sorting: mergesort and quicksort (though not in place)
 • Easy to get a little parallelism
 • With cleverness can get a lot of parallelism
The Prefix-Sum Problem

Given int[] input, produce int[] output where:

output[i] is the sum of input[0]+input[1]+...+input[i]

Sequential can be a CS1 exam problem:

```java
int[] prefix_sum(int[] input){
    int[] output = new int[input.length];
    output[0] = input[0];
    for(int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}
```

Does not seem parallelizable

- Work: $O(n)$, Span: $O(n)$

This algorithm is sequential, but a different algorithm has

- Work: $O(n)$, Span: $O(\log n)$
Parallel Prefix-Sum

- The parallel-prefix algorithm does two passes
 - Each pass has $O(n)$ work and $O(\log n)$ span
 - So in total there is $O(n)$ work and $O(\log n)$ span
 - So just like with array summing, parallelism is $n / \log n$
 - An exponential speedup

- The first pass builds a tree bottom-up: the “up” pass

- The second pass traverses the tree top-down: the “down” pass

Historical note:

Original algorithm due to R. Ladner and M. Fischer at the University of Washington in 1977
Example

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>36</td>
</tr>
<tr>
<td>16</td>
<td>52</td>
</tr>
<tr>
<td>14</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
</tr>
</tbody>
</table>
The Algorithm: Part 1

1. Up: Build a binary tree where
 - Root has sum of the range \([x,y]\)
 - If a node has sum of \([lo,hi]\) and \(hi>lo\),
 - Left child has sum of \([lo,middle]\)
 - Right child has sum of \([middle,hi]\)
 - A leaf has sum of \([i,i+1]\) i.e., \(input[i]\)

This is an easy fork-join computation: combine results by actually building a binary tree with the range-sums
 - Tree built bottom-up in parallel
 - Could be more clever in an array, as we were with heaps

Analysis: \(O(n)\) work, \(O(\log n)\) span
The Algorithm: Part 2

2. Down: Pass down a value fromLeft
 - Root given a fromLeft of 0
 - Node takes its fromLeft value and
 • Passes its left child
 – the same fromLeft
 • Passes its right child
 – its fromLeft plus its left child’s sum (stored in part 1)
 - At the leaf for array position i,
 \[\text{output}[i] = \text{fromLeft} + \text{input}[i]\]

This is an easy fork-join computation:
traverse the tree built in step 1 and produce no result
 - Leaves assign to output
 - Invariant: fromLeft is sum of elements left of the node’s range

Analysis: \(O(n)\) work, \(O(\log n)\) span
Sequential Cut-Off

Adding a sequential cut-off is easy as always:

- **Up:**

 just a sum, have leaf node hold the sum of a range

- **Down:**

  ```
  output[lo] = fromLeft + input[lo];
  for(i=lo+1; i < hi; i++)
      output[i] = output[i-1] + input[i]
  ```
Generalizing Parallel Prefix

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that can be used in many problems

• Minimum, maximum of all elements to the left of \(i \)

• Is there an element to the left of \(i \) satisfying some property?

• Count of elements to the left of \(i \) satisfying some property
 – This last one is perfect for an efficient parallel pack
 – Perfect for building on top of the “parallel prefix trick”
Pack

[Non-standard terminology, filter does not emphasize stability]

Given an array input, produce an array output containing only elements such that f(elt) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: is elt > 10
output [17, 11, 13, 19, 24]

Parallelizable
- Finding elements for the output is easy
- But getting them in the right place seems hard
Parallel Map, Parallel Prefix, Parallel Map

1. Parallel map to compute a bit-vector for true elements

 input \[17, 4, 6, 8, 11, 5, 13, 19, 0, 24\]
 bits \[1, 0, 0, 0, 1, 0, 1, 1, 0, 1\]

2. Parallel-prefix sum on the bit-vector

 bitsum \[1, 1, 1, 1, 2, 2, 3, 4, 4, 5\]

3. Parallel map to produce the output

 output \[17, 11, 13, 19, 24\]

   ```
   output = new array of size bitsum[n-1]
   FORALL (i=0; i < input.length; i++){
       if(bits[i]==1)
           output[bitsum[i]-1] = input[i];
   }
   ```
Pack Comments

• First two steps can be combined into one pass
 – Use a different base case for the prefix sum
 – No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum
 – Again no effect on asymptotic complexity

• Analysis: $O(n)$ work, $O(\log n)$ span
 – Multiple passes, but this is a constant

• Parallelized packs will help us parallelize quicksort