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Work and Span in the DAG 

• fork and join execution can be seen as a DAG 

– Nodes: Pieces of work  

– Edges: Source must finish before destination starts 

• A fork “ends a node” and makes 

two outgoing edges 

• New thread 

• Continuation of current thread 
 

• A join “ends a node” and makes 

a node with two incoming edges 

• Node just ended 

• Last node of thread joined on 
 



Work and Span 

Run-time costs are on the nodes, not on the edges 

 

• Work: T1 = sum of all nodes in the DAG 

– One processor has to do all the work 

– Any topological sort is a legal execution 

 

• Span: T = sum of all nodes on most-expensive path in the DAG 

– Can do everything that is ready, but still must wait for results 

– If all nodes are roughly equal cost, this is the longest path 

– Example: O(log n) for summing an array  

• Notice having > n/2 processors is no additional help 

 

Let TP be the running time if there are P processors available 

 



More Definitions 

 

• Speed-up on P processors: T1 / TP   
 

• If speed-up is P as we vary P, we call it perfect linear speed-up 

– Perfect linear speed-up means doubling P halves running time 

– Usually our goal; hard to get in practice 
 

• Parallelism is the maximum possible speed-up: T1 / T   

– At some point, adding processors will not help 

– What that point is depends on the span 
 

Parallel algorithms are about decreasing span without increasing work  

 … or at least not increasing work too much … 

   

 



Optimal TP 

• So we know T1 and T  but actually care about TP  (e.g., P=4) 
 

 

• Ignoring memory-hierarchy issues, TP cannot beat 

– T1 / P     why not? 

– T          why not? 

 

 

• So an asymptotically optimal execution would be: 

TP  =  O((T1 / P) + T ) 

 

First term dominates for small P, second for large P 
 



Division of Responsibility 

• Our job as users of a ForkJoin Framework: 

– Pick a good algorithm, write a program 

– When run, it creates a DAG of things to do 

– Make all nodes small-ish and approximately equal work 

 

• The job of the framework developer: 

– Assign work to available processors to avoid idling 

– Keep constant factors low 

– Give the expected-time optimal guarantee  

 TP  =  O((T1 / P) + T ) 

assuming framework-user did their job 

 

– We will not study how the framework does this 

 



What That Means:  Mostly Good News 

The fork-join framework guarantee: 

  TP  =  O((T1 / P) + T ) 

 

– No implementation can beat O(T ) by more than a constant factor 

– No implementation on P processors can beat O(T1 / P) 

– So the framework on average gets within a constant factor of the 

best you can do, assuming framework user did their part correctly 
 

 

You can focus on your algorithm, data structures, and cut-offs 

 

Do not worry about number of processors and scheduling 

• Analyze running time given T1, T , and P 



Examples 

TP  =  O((T1 / P) + T ) 
 

• In the algorithms seen so far (e.g., sum an array): 

–  T1 = O(n) 

–  T = O(log n) 

– So expect (ignoring overheads): TP  =  O(n/P + log n) 

 

• Suppose instead: 

–  T1 = O(n2) 

–  T = O(n) 

– So expect (ignoring overheads): TP  =  O(n2/P + n) 

  

 



Amdahl’s Law:  Mostly Bad News 

• We have analyzed a parallel program in terms of work and span 

 

• In practice, it is common that your program has: 

 

  a) parts that parallelize well: 

– Such as maps/reduces over arrays and trees  

 

b) …and parts that don’t parallelize at all: 

– Such as reading a linked list, getting input, or just doing 

computations where each step needs the results of previous step 

 

• These unparallelized parts can turn out to be a big bottleneck 



Amdahl’s Law:  Mostly Bad News 

Let the work be 1 unit time 
 

Let S be the portion of the execution that cannot be parallelized 
 

Then:    T1 = S + (1-S) = 1 
 

Suppose we get perfect linear speedup on the parallel portion 
 

Then:   TP = S + (1-S)/P 
 

So the overall speedup with P processors (this is Amdahl’s Law): 

T1 / TP  = 1 / (S + (1-S)/P)   
 

And the parallelism is (with infinite processors): 

T1 / T  = 1 / S 



Amdahl’s Law Example 

Suppose:  

  

  T1 = S + (1-S) = 1  (aka total program execution time) 

 T1 = 1/3 + 2/3 = 1 

 T1 = 33 sec + 67 sec = 100 sec 
 

 

Time on P processors: TP = S + (1-S)/P  

 

So:   

  TP = 33 sec + (67 sec)/P 

 T3 = 33 sec + (67 sec)/3  

  T3 = 33 sec + 22.33 sec = 55.33 sec 

 
 

 

 



Why Such Bad News? 

 T1 / TP  = 1 / (S + (1-S)/P)    T1 / T  = 1 / S 
 

 

• Suppose 33% of a program is sequential 

– Then a billion processors will not give a speedup over 3 
 

• Suppose you miss the good old days where you  

could get 100x speedup by just waiting about 12 years 
 

• Now suppose in 12 years,  

clock speed is the same but you get 256 processors instead of 1 
 

• For 256 processors to get at least 100x speedup, we need 
 

   100  1 / (S + (1-S)/256) 
 

Which means S  .0061  (i.e., 99.4% perfectly parallelizable)  



Plots You Need to See 

1. Assume 256 processors 

– x-axis: sequential portion S, ranging from .01 to .25 

– y-axis: speedup T1 / TP (will go down as S increases) 

 

2. Assume S = .01 or .1 or .25 (three separate lines) 

– x-axis: number of processors P, ranging from 2 to 32 

– y-axis: speedup T1 / TP (will go up as P increases) 

 

Do this as a homework problem! 

– More practice with a spreadsheet or graphing program   

– Compare against your intuition 

– A picture is worth 1000 words, especially if you made it 



All is Not Lost 

Amdahl’s Law is a harsh reality 

– But it does not mean additional processors are worthless 

 

• We can find new parallel algorithms 

– Some things that seem sequential are actually parallelizable 

 

• We can change the problem or do new things 

– Video games use tons of parallel processors   

• They are not rendering 10-year-old graphics faster 

• They are rendering better monsters, better scenery 



Moore and Amdahl 

• Moore’s “Law” is an observation about  

the progress of the semiconductor industry 

– Transistor density doubles roughly every 18 months 
 

• Amdahl’s Law is a mathematical theorem 

– Implies diminishing returns of adding more processors 
 

• Both are incredibly important in designing computer systems 



Moving Forward 

Done: 

– Simple ways to use parallelism for counting, summing, finding 

– Analysis of running time and implications of Amdahl’s Law 
 

Now:   

– Clever ways to parallelize more than is intuitively possible 

– Parallel prefix:  

• This “key trick” typically underlies surprising parallelization 

• Enables other things like packs 

– Parallel sorting: mergesort and quicksort (though not in place) 

• Easy to get a little parallelism 

• With cleverness can get a lot of parallelism 



The Prefix-Sum Problem 

Given int[] input, produce int[] output where: 
 

 output[i] is the sum of input[0]+input[1]+…+input[i] 
 

Sequential can be a CS1 exam problem: 

int[] prefix_sum(int[] input){ 
  int[] output = new int[input.length]; 
  output[0] = input[0]; 
  for(int i=1; i < input.length; i++) 
    output[i] = output[i-1]+input[i]; 
  return output; 

} 

Does not seem parallelizable 

• Work: O(n), Span: O(n) 

This algorithm is sequential, but a different algorithm has  

• Work: O(n), Span: O(log n) 



Parallel Prefix-Sum 

• The parallel-prefix algorithm does two passes 

– Each pass has O(n) work and O(log n) span 

– So in total there is O(n) work and O(log n) span 

– So just like with array summing, parallelism is n / log n  

– An exponential speedup 
 

• The first pass builds a tree bottom-up: the “up” pass 
 

• The second pass traverses the tree top-down: the “down” pass 
 

Historical note: 

Original algorithm due to  

R. Ladner and M. Fischer at the 

University of Washington in 1977 
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The Algorithm:  Part 1 

1. Up: Build a binary tree where  

– Root has sum of the range [x,y) 

– If a node has sum of [lo,hi) and hi>lo,  

• Left child has sum of [lo,middle) 

• Right child has sum of [middle,hi)  

• A leaf has sum of [i,i+1)   i.e., input[i] 
 

 

This is an easy fork-join computation:  

combine results by actually building a binary tree with the range-sums 

– Tree built bottom-up in parallel 

– Could be more clever in an array, as we were with heaps 
 

Analysis: O(n) work, O(log n) span 



The Algorithm:  Part 2 
2. Down: Pass down a value fromLeft 

– Root given a fromLeft of 0 

– Node takes its fromLeft value and 

• Passes its left child 

– the same fromLeft 

• Passes its right child  

– its fromLeft plus its left child’s sum (stored in part 1) 

– At the leaf for array position i, 

output[i]=fromLeft+input[i] 
 

This is an easy fork-join computation:  

traverse the tree built in step 1 and produce no result  

– Leaves assign to output 

– Invariant: fromLeft is sum of elements left of the node’s range 
 

Analysis: O(n) work, O(log n) span 



Sequential Cut-Off 

Adding a sequential cut-off is easy as always: 

 

• Up:  

 just a sum, have leaf node hold the sum of a range 

 

• Down:  

    output[lo] = fromLeft + input[lo]; 

     for(i=lo+1; i < hi; i++) 

       output[i] = output[i-1] + input[i] 



Generalizing Parallel Prefix 

Just as sum-array was the simplest example of a common pattern, 

prefix-sum illustrates a pattern that can be used in many problems 

 

• Minimum, maximum of all elements to the left of i 

 

• Is there an element to the left of i satisfying some property? 

 

• Count of elements to the left of i satisfying some property 

– This last one is perfect for an efficient parallel pack 

– Perfect for building on top of the “parallel prefix trick” 

 



Pack 

[Non-standard terminology, filter does not emphasize stability] 

 

Given an array input,  

produce an array output  

containing only elements such that f(elt) is true 

 

Example:  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

        f: is elt > 10 

        output [17, 11, 13, 19, 24] 

 

Parallelizable 

– Finding elements for the output is easy 

– But getting them in the right place seems hard 



Parallel Map, Parallel Prefix, Parallel Map 

1. Parallel map to compute a bit-vector for true elements 

input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 

bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1] 
 

2. Parallel-prefix sum on the bit-vector 

 bitsum [1,  1, 1, 1,  2, 2,  3,  4, 4,  5] 
 

3. Parallel map to produce the output 

 output [17, 11, 13, 19, 24] 

  

 

 

output = new array of size bitsum[n-1] 

FORALL(i=0; i < input.length; i++){ 

  if(bits[i]==1) 

    output[bitsum[i]-1] = input[i]; 

} 



Pack Comments 

 

• First two steps can be combined into one pass 

– Use a different base case for the prefix sum 

– No effect on asymptotic complexity 

 

• Can also combine third step into the down pass of the prefix sum 

– Again no effect on asymptotic complexity 

 

• Analysis: O(n) work, O(log n) span  

– Multiple passes, but this is a constant 

 

• Parallelized packs will help us parallelize quicksort 


