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From Our Previous Lecture 

int sum(int[] arr){ // can be a static method 
  int len = arr.length; 
  int ans = 0; 
  SumThread[] ts = new SumThread[4]; 
  for(int i=0; i < 4; i++){// do parallel computations 
    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 
    ts[i].start();  
  } 
  for(int i=0; i < 4; i++) { // combine results 
    ts[i].join(); // wait for helper to finish! 
    ans += ts[i].ans; 
  } 
  return ans; 
} 

class SumThread extends java.lang.Thread { 
  int lo, int hi, int[] arr; // arguments 
  int ans = 0; // result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ … } // override 
} 



A Better Approach 

Several reasons why this is a poor parallel algorithm 
 

1. Want code to be reusable and efficient across platforms 

– “Forward-portable” as core count grows 

– So at the very least, parameterize by the number of threads 

 

 int sum(int[] arr, int numThreads){ 
  …  // note: shows idea, but has integer-division bug 
  int subLen = arr.length / numThreads; 
  SumThread[] ts = new SumThread[numThreads]; 
  for(int i=0; i < numThreads; i++){ 
   ts[i] = new SumThread(arr,i*subLen,(i+1)*subLen); 
   ts[i].start(); 
  } 
  for(int i=0; i < numThreads; i++) {  
    … 
  } 
  … 



A Better Approach 

2. Want to use only the processors “available to you now” 
 

– Not used by other programs or threads in your program 

• Maybe caller is also using parallelism 

• Available cores can change even while your threads run 
 

– If 3 processors available and 3 threads would take time X, 

creating 4 threads can have worst-case time of 1.5X 

 

 

 

// numThreads == numProcessors is bad 
// if some are needed for other things 
int sum(int[] arr, int numThreads){ 
  … 
} 
 



A Better Approach 

3. Though unlikely for sum, in general subproblems may take 

significantly different amounts of time 

 

– Example: Apply method f to every array element, but maybe 

f is much slower for some data items 

• Example: Is a large integer prime? 

 

– If we create 4 threads and all the slow data is processed by 1 

of them, we won’t get nearly a 4x speedup 

• Example of a load imbalance 

 

 

 



A Better Approach 

The perhaps counterintuitive solution to all these problems is: 

to use lots of threads, far more than the number of processors 

– When a processor finishes a piece, it can start another 

– Require a different algorithm, and will abandon Java threads 

 

 
 
 

           ans0         ans1          …         ansN 

                         ans 

1. Forward-Portable: Lots of helpers each doing a small piece 

2. Processors Available: Hand out “work chunks” as you go 

• If 3 processors available and have 100 threads, worst-case extra 

time is < 3% (if we ignore constant factors and load imbalance) 

3. Load Imbalance: No problem if slow thread scheduled early enough 

• Variation probably small if pieces of work are small 

 

 



Naïve Algorithm is Poor 

• Suppose we create 1 thread to process every 100 elements 

 int sum(int[] arr){ 
  … 
  // How many pieces of size 100 do we have? 
  int numThreads = arr.length / 100; 
  SumThread[] ts = new SumThread[numThreads]; 
  … 
} 

• Combining results will require arr.length / 100 additions 

• Linear in size of array  

• Previously we only had 4 pieces, Ө(1) to combine 

 

• In the extreme, suppose we create one thread per element 

• Using a loop to combine the results requires N iterations  



A Better Idea 

This is straightforward to implement using divide-and-conquer 

– Parallelism for the recursive calls 

 

Halve and make new thread until size is at some cutoff 

Combine answers in pairs as we return 

This will start small, and ‘grow’ threads to fit the problem 

 

+ + + + + + + + 

+ + + + 

+ + 

+ 



Divide-and-Conquer 

The key is to do the result-combining in parallel as well 

– And using recursive divide-and-conquer makes this natural 

– Easier to write and more efficient asymptotically! 

class SumThread extends java.lang.Thread { 
  int lo; int hi; int[] arr; // arguments 
  int ans = 0; // result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ // override 
    if(hi – lo < SEQUENTIAL_CUTOFF) 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
    else { 
      SumThread left = new SumThread(arr,lo,(hi+lo)/2); 
      SumThread right= new SumThread(arr,(hi+lo)/2,hi); 
      left.start(); 
      right.start(); 
      left.join(); // don’t move this up a line – why? 
      right.join(); 
      ans = left.ans + right.ans; 
    } 
  } 
} 
int sum(int[] arr){  
   SumThread t = new SumThread(arr,0,arr.length); 
   t.run(); 
   return t.ans; 
} 



Divide-and-Conquer Really Works 

• The key is divide-and-conquer parallelizes the result-combining 

– If you have enough processors, total time is height of the tree: 
O(log n) (optimal, exponentially faster than sequential O(n)) 

 

• Will write our parallel algorithms in this style 

– But using a special library designed and engineered for this style 

• Takes care of scheduling the computation well 

– Often relies on operations being associative (as with +) 

+ + + + + + + + 

+ + + + 

+ + 

+ 



Being Realistic 

• In theory, you can divide down to single elements,  

do all your result-combining in parallel and get optimal speedup 
 

• In practice, creating all those threads and communicating  

amongst them swamps the savings, so: 

 
 

– Use a sequential cutoff, typically around 500-1000 

• Eliminates almost all the recursive thread creation 

(because it eliminates the bottom levels of tree) 

• Exactly like quicksort switching to insertion sort  

for small subproblems, but more important here 
 



Illustration of Fewer Threads 

+ 

5 
+ 

3 

+ 

6 

+ 

2 

+ 

7 
+ 

4 

+ 

8 

+ 

1 
+ 

3 

+ 

2 

+ 

4 

+ 

1 
+ 

2 

+ 

1 +

1 

2 new 

threads 

at each step 

(and only leaves 

do much work) 

1 new 

thread 

at each step 

+ 

8 
+ 

9 

+ 

10 

+ 

11 

  + 

12 

+ 

13 

  + 

14 
+ 

15 
+ 

4 

+ 

5 

+ 

6 

+ 

7 
+ 

2 

+ 

3 +

1 



Half the Threads 

// wasteful: don’t 
SumThread left  = … 
SumThread right = … 
left.start(); 
right.start(); 
left.join();  
right.join(); 
ans=left.ans+right.ans; 

// better: do 
SumThread left  = … 
SumThread right = … 
// order of next 4 lines 
// essential – why? 
left.start(); 
right.run(); 
left.join();  
ans=left.ans+right.ans; 



Half the Threads 

Do not create two threads; create one and do the other “yourself” 

– Cuts the number of threads created by 2x 

– And the difference is surprisingly substantial 

 

If a language had built-in support for fork-join parallelism,  

we would expect this hand-optimization to be unnecessary 

 

The library we are using allows you to do it yourself 

– ForkJoinTask.invokeAll(…) probably does something similar 

– You will do this yourselves for the same reason you 

implement your own data structures 

 

But no difference in theory or asymptotic analysis 

 

 

 



The Library 

• Even with all this care, Java’s threads are too “heavyweight” 

– Constant factors, especially space overhead 

– Creating 20,000 Java threads just a bad idea 
 

• The ForkJoin Framework is designed and engineered 

to meet the needs of divide-and-conquer fork-join parallelism 

– Included in the Java 7 standard libraries 

• Also available as a downloaded .jar file for Java 6 

– Section will discuss some pragmatics/logistics 

– Similar libraries available for other languages  

• C/C++: Cilk, Intel’s Thread Building Blocks 

• C#: Task Parallel Library 

– Library implementation is an advanced topic 



Different Terms but Same Basic Idea 

To use the ForkJoin Framework: 

• A little standard set-up code (e.g., create a ForkJoinPool) 
 

Don’t subclass Thread       Do subclass RecursiveTask<V> 

Don’t override run      Do override compute 

Don’t use an ans field      Do return a V from compute 

Don’t call start      Do call fork 

Don’t just call join  Do call join which returns answer 

Don’t call run to hand-optimize  Do call compute to hand-optimize 

Don’t have topmost call to run Do create a pool and call invoke 

     See ForkJoinTask.invokeAll(…) 

  Java Threads   ForkJoin Framework 
 

See the Dan’s web page for  

 “A Beginner’s Introduction to the ForkJoin Framework” 

 

 

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html


Example: Final Version in ForkJoin Framework 

class SumArray extends RecursiveTask<Integer> { 
  int lo; int hi; int[] arr; // arguments 
  SumArray(int[] a, int l, int h) { … } 
  protected Integer compute(){// return answer 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
      int ans = 0; 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
      return ans; 
    } else { 
      SumArray left = new SumArray(arr,lo,(hi+lo)/2); 
      SumArray right= new SumArray(arr,(hi+lo)/2,hi); 
      left.fork(); 
      int rightAns = right.compute(); 
      int leftAns  = left.join();  
      return leftAns + rightAns; 
    } 
  } 
} 
static final ForkJoinPool fjPool = new ForkJoinPool(); 
int sum(int[] arr){ 
  return fjPool.invoke(new SumArray(arr,0,arr.length)); 
} 



For Comparison: Java Threads Version 

The key is to do the result-combining in parallel as well 

– And using recursive divide-and-conquer makes this natural 

– Easier to write and more efficient asymptotically! 

class SumThread extends java.lang.Thread { 
  int lo; int hi; int[] arr;//fields to know what to do 
  int ans = 0; // for communicating result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
    else { // create 2 threads, each will do ½ the work 
      SumThread left = new SumThread(arr,lo,(hi+lo)/2); 
      SumThread right= new SumThread(arr,(hi+lo)/2,hi); 
      left.start(); 
      right.start(); 
      left.join(); // don’t move this up a line – why? 
      right.join(); 
      ans = left.ans + right.ans; 
    } 
  } 
} 
class C { 
 static int sum(int[] arr){  
   SumThread t = new SumThread(arr,0,arr.length); 
   t.run(); // only creates one thread 
   return t.ans; 
 } 
} 



Getting Good Results in Practice 

• Sequential threshold 

– Library documentation recommends doing approximately 

100-5000 basic operations in each “piece” of your algorithm 
 

• Library needs to “warm up” 

– May see slow results before the Java virtual machine  

re-optimizes the library internals  

– When evaluating speed, put your computations in a loop to see 

the “long-term benefit” after these optimizations have occurred  
 

• Wait until your computer has more processors 

– Seriously, overhead may dominate at 4 processors,  

but parallel programming is likely to become much more important 
 

• Beware memory-hierarchy issues  

– Will not focus on this, but can be crucial for parallel performance 



Work and Span 

Let TP be the running time if there are P processors available 

 

Two key measures of run-time: 

 

• Work: How long it would take 1 processor = T1 

– Just “sequentialize” the recursive forking 

 

• Span: How long it would take infinity processors = T 

– The longest dependence-chain 

– Example: O(log n) for summing an array  

• Notice having > n/2 processors is no additional help 

– Also called “critical path length” or “computational depth” 



The DAG 

• A program execution using fork and join can be seen as a DAG 

– Nodes: Pieces of work  

– Edges: Source must finish before destination starts 

• A fork “ends a node” and makes 

two outgoing edges 

• New thread 

• Continuation of current thread 
 

• A join “ends a node” and makes 

a node with two incoming edges 

• Node just ended 

• Last node of thread joined on 



Our Simple Examples 

• fork and join are very flexible, but divide-and-conquer maps 

and reductions use them in a very basic way: 

– A tree on top of an upside-down tree 

base cases 

divide  

combine 

results  



More Interesting DAGs? 

• The DAGs are not always this simple 

 

• Example:  

– Suppose combining two results might be expensive enough 

that we want to parallelize each one 

 

– Then each node in the inverted tree on the previous slide 

would itself expand into another set of nodes for that parallel 

computation 



What Else Looks Like This? 

• Summing an array went from O(n) sequential to O(log n) parallel 

(assuming a lot of processors and very large n) 

– An exponential speed-up in theory 

+ + + + + + + + 

+ + + + 

+ + 

+ 

• Anything that can use results from two halves and merge them 

in O(1) time has the same property… 



Examples 

• Maximum or minimum element 

 

• Is there an element satisfying some property (e.g., is there a 17)? 

 

• Left-most element satisfying some property (e.g., first 17) 

– What should the recursive tasks return? 

– How should we merge the results? 

 

• Corners of a rectangle containing all points (a “bounding box”) 

 

• Counts, for example, number of strings that start with a vowel 

– This is just summing with a different base case 

 
 



Reductions 

• Computations of this form are called reductions (or reduces?) 
 

• Produce single answer from collection via an associative operator 

– Examples: max, count, leftmost, rightmost, sum, … 

– Non-example: median 
 

• Recursive results don’t have to be single numbers or strings.  

They can be arrays or objects with multiple fields. 

– Example: Histogram of test results is a variant of sum 
 

• But some things are inherently sequential 

– How we process arr[i] may depend entirely on the result of 

processing arr[i-1] 



Maps and Data Parallelism 

• A map operates on each element of a collection independently to 

create a new collection of the same size 

– No combining results 

– For arrays, this is so trivial some hardware has direct support 
 

• Canonical example: Vector addition 

 

 

 

 

 

 

int[] vector_add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  result = new int[arr1.length]; 
  FORALL(i=0; i < arr1.length; i++) { 
    result[i] = arr1[i] + arr2[i]; 
  } 
  return result; 
} 



Maps in ForkJoin Framework 

• Even though there is no result-combining, it still helps with load 

balancing to create many small tasks 

– Maybe not for vector-add but for more compute-intensive maps 

– The forking is O(log n) whereas theoretically other approaches 

to vector-add is O(1) 

class VecAdd extends RecursiveAction { 
  int lo; int hi; int[] res; int[] arr1; int[] arr2;    
  VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … } 
  protected void compute(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
 for(int i=lo; i < hi; i++) 
        res[i] = arr1[i] + arr2[i]; 
    } else { 
      int mid = (hi+lo)/2; 
      VecAdd left = new VecAdd(lo,mid,res,arr1,arr2); 
      VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);    
      left.fork(); 
      right.compute(); 
      left.join(); 
    } 
  } 
} 
static final ForkJoinPool fjPool = new ForkJoinPool(); 
int[] add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  int[] ans = new int[arr1.length]; 
  fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2); 
  return ans; 
} 



Maps and Reductions 

Maps and reductions: the “workhorses” of parallel programming 

 

– By far the two most important and common patterns 

• We will discuss two more advanced patterns later 

 

– Learn to recognize when an algorithm can be written  

in terms of maps and reductions 

 

– Often Use maps and reductions to describe parallel algorithms 

 

– Programming them becomes “trivial” with a little practice 

• Exactly like sequential for-loops seem second-nature 

 



Digression:  MapReduce on Clusters 

• You may have heard of Google’s “map/reduce” 

– Or the open-source version Hadoop 
 

• Idea: Perform maps/reduces on data using many machines 

– The system takes care of distributing the data and managing 

fault tolerance 

– You just write code to map one element and reduce 

elements to a combined result 
 

• Separates how to do recursive divide-and-conquer from what 

computation to perform 

– Old idea in higher-order functional programming transferred 

to large-scale distributed computing 

– Complementary approach to declarative queries for 

databases 



Trees 

• Maps and reductions work just fine on balanced trees 

– Divide-and-conquer each child rather than array subranges 

– Correct for unbalanced trees, but won’t get much speed-up 

 

• Example: minimum element in an unsorted but balanced binary 
tree in O(log n) time given enough processors 

 

• How to do the sequential cut-off? 

– Store number-of-descendants at each node (easy to maintain) 

– Or could approximate it with, e.g., AVL-tree height 



Linked Lists 

• Can you parallelize maps or reduces over linked lists? 

– Example: Increment all elements of a linked list 

– Example: Sum all elements of a linked list 

b c d e f 

front back 

• Once again, data structures matter! 

 

• For parallelism, balanced trees generally better than lists so that 
we can get to all the data exponentially faster O(log n) vs. O(n) 

– Trees have the same flexibility as lists compared to arrays 

 


