
CSE332: Data Abstractions

Lecture 16: Into to Parallelism and Concurrency

James Fogarty

Winter 2012

Including slides developed in part by

Ruth Anderson, James Fogarty, Dan Grossman

From Our Previous Lecture

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start();
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

A Better Approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms

– “Forward-portable” as core count grows

– So at the very least, parameterize by the number of threads

 int sum(int[] arr, int numThreads){
 … // note: shows idea, but has integer-division bug
 int subLen = arr.length / numThreads;
 SumThread[] ts = new SumThread[numThreads];
 for(int i=0; i < numThreads; i++){
 ts[i] = new SumThread(arr,i*subLen,(i+1)*subLen);
 ts[i].start();
 }
 for(int i=0; i < numThreads; i++) {
 …
 }
 …

A Better Approach

2. Want to use only the processors “available to you now”

– Not used by other programs or threads in your program

• Maybe caller is also using parallelism

• Available cores can change even while your threads run

– If 3 processors available and 3 threads would take time X,

creating 4 threads can have worst-case time of 1.5X

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numThreads){
 …
}

A Better Approach

3. Though unlikely for sum, in general subproblems may take

significantly different amounts of time

– Example: Apply method f to every array element, but maybe

f is much slower for some data items

• Example: Is a large integer prime?

– If we create 4 threads and all the slow data is processed by 1

of them, we won’t get nearly a 4x speedup

• Example of a load imbalance

A Better Approach

The perhaps counterintuitive solution to all these problems is:

to use lots of threads, far more than the number of processors

– When a processor finishes a piece, it can start another

– Require a different algorithm, and will abandon Java threads

 ans0 ans1 … ansN

 ans

1. Forward-Portable: Lots of helpers each doing a small piece

2. Processors Available: Hand out “work chunks” as you go

• If 3 processors available and have 100 threads, worst-case extra

time is < 3% (if we ignore constant factors and load imbalance)

3. Load Imbalance: No problem if slow thread scheduled early enough

• Variation probably small if pieces of work are small

Naïve Algorithm is Poor

• Suppose we create 1 thread to process every 100 elements

 int sum(int[] arr){
 …
 // How many pieces of size 100 do we have?
 int numThreads = arr.length / 100;
 SumThread[] ts = new SumThread[numThreads];
 …
}

• Combining results will require arr.length / 100 additions

• Linear in size of array

• Previously we only had 4 pieces, Ө(1) to combine

• In the extreme, suppose we create one thread per element

• Using a loop to combine the results requires N iterations

A Better Idea

This is straightforward to implement using divide-and-conquer

– Parallelism for the recursive calls

Halve and make new thread until size is at some cutoff

Combine answers in pairs as we return

This will start small, and ‘grow’ threads to fit the problem

+ + + + + + + +

+ + + +

+ +

+

Divide-and-Conquer

The key is to do the result-combining in parallel as well

– And using recursive divide-and-conquer makes this natural

– Easier to write and more efficient asymptotically!

class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ // override
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}
int sum(int[] arr){
 SumThread t = new SumThread(arr,0,arr.length);
 t.run();
 return t.ans;
}

Divide-and-Conquer Really Works

• The key is divide-and-conquer parallelizes the result-combining

– If you have enough processors, total time is height of the tree:
O(log n) (optimal, exponentially faster than sequential O(n))

• Will write our parallel algorithms in this style

– But using a special library designed and engineered for this style

• Takes care of scheduling the computation well

– Often relies on operations being associative (as with +)

+ + + + + + + +

+ + + +

+ +

+

Being Realistic

• In theory, you can divide down to single elements,

do all your result-combining in parallel and get optimal speedup

• In practice, creating all those threads and communicating

amongst them swamps the savings, so:

– Use a sequential cutoff, typically around 500-1000

• Eliminates almost all the recursive thread creation

(because it eliminates the bottom levels of tree)

• Exactly like quicksort switching to insertion sort

for small subproblems, but more important here

Illustration of Fewer Threads

+

5
+

3

+

6

+

2

+

7
+

4

+

8

+

1
+

3

+

2

+

4

+

1
+

2

+

1 +

1

2 new

threads

at each step

(and only leaves

do much work)

1 new

thread

at each step

+

8
+

9

+

10

+

11

 +

12

+

13

 +

14
+

15
+

4

+

5

+

6

+

7
+

2

+

3 +

1

Half the Threads

// wasteful: don’t
SumThread left = …
SumThread right = …
left.start();
right.start();
left.join();
right.join();
ans=left.ans+right.ans;

// better: do
SumThread left = …
SumThread right = …
// order of next 4 lines
// essential – why?
left.start();
right.run();
left.join();
ans=left.ans+right.ans;

Half the Threads

Do not create two threads; create one and do the other “yourself”

– Cuts the number of threads created by 2x

– And the difference is surprisingly substantial

If a language had built-in support for fork-join parallelism,

we would expect this hand-optimization to be unnecessary

The library we are using allows you to do it yourself

– ForkJoinTask.invokeAll(…) probably does something similar

– You will do this yourselves for the same reason you

implement your own data structures

But no difference in theory or asymptotic analysis

The Library

• Even with all this care, Java’s threads are too “heavyweight”

– Constant factors, especially space overhead

– Creating 20,000 Java threads just a bad idea

• The ForkJoin Framework is designed and engineered

to meet the needs of divide-and-conquer fork-join parallelism

– Included in the Java 7 standard libraries

• Also available as a downloaded .jar file for Java 6

– Section will discuss some pragmatics/logistics

– Similar libraries available for other languages

• C/C++: Cilk, Intel’s Thread Building Blocks

• C#: Task Parallel Library

– Library implementation is an advanced topic

Different Terms but Same Basic Idea

To use the ForkJoin Framework:

• A little standard set-up code (e.g., create a ForkJoinPool)

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Don’t use an ans field Do return a V from compute

Don’t call start Do call fork

Don’t just call join Do call join which returns answer

Don’t call run to hand-optimize Do call compute to hand-optimize

Don’t have topmost call to run Do create a pool and call invoke

 See ForkJoinTask.invokeAll(…)

 Java Threads ForkJoin Framework

See the Dan’s web page for

 “A Beginner’s Introduction to the ForkJoin Framework”

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html

Example: Final Version in ForkJoin Framework

class SumArray extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // arguments
 SumArray(int[] a, int l, int h) { … }
 protected Integer compute(){// return answer
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 int ans = 0;
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 } else {
 SumArray left = new SumArray(arr,lo,(hi+lo)/2);
 SumArray right= new SumArray(arr,(hi+lo)/2,hi);
 left.fork();
 int rightAns = right.compute();
 int leftAns = left.join();
 return leftAns + rightAns;
 }
 }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
 return fjPool.invoke(new SumArray(arr,0,arr.length));
}

For Comparison: Java Threads Version

The key is to do the result-combining in parallel as well

– And using recursive divide-and-conquer makes this natural

– Easier to write and more efficient asymptotically!

class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr;//fields to know what to do
 int ans = 0; // for communicating result
 SumThread(int[] a, int l, int h) { … }
 public void run(){
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else { // create 2 threads, each will do ½ the work
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}
class C {
 static int sum(int[] arr){
 SumThread t = new SumThread(arr,0,arr.length);
 t.run(); // only creates one thread
 return t.ans;
 }
}

Getting Good Results in Practice

• Sequential threshold

– Library documentation recommends doing approximately

100-5000 basic operations in each “piece” of your algorithm

• Library needs to “warm up”

– May see slow results before the Java virtual machine

re-optimizes the library internals

– When evaluating speed, put your computations in a loop to see

the “long-term benefit” after these optimizations have occurred

• Wait until your computer has more processors

– Seriously, overhead may dominate at 4 processors,

but parallel programming is likely to become much more important

• Beware memory-hierarchy issues

– Will not focus on this, but can be crucial for parallel performance

Work and Span

Let TP be the running time if there are P processors available

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

– Just “sequentialize” the recursive forking

• Span: How long it would take infinity processors = T

– The longest dependence-chain

– Example: O(log n) for summing an array

• Notice having > n/2 processors is no additional help

– Also called “critical path length” or “computational depth”

The DAG

• A program execution using fork and join can be seen as a DAG

– Nodes: Pieces of work

– Edges: Source must finish before destination starts

• A fork “ends a node” and makes

two outgoing edges

• New thread

• Continuation of current thread

• A join “ends a node” and makes

a node with two incoming edges

• Node just ended

• Last node of thread joined on

Our Simple Examples

• fork and join are very flexible, but divide-and-conquer maps

and reductions use them in a very basic way:

– A tree on top of an upside-down tree

base cases

divide

combine

results

More Interesting DAGs?

• The DAGs are not always this simple

• Example:

– Suppose combining two results might be expensive enough

that we want to parallelize each one

– Then each node in the inverted tree on the previous slide

would itself expand into another set of nodes for that parallel

computation

What Else Looks Like This?

• Summing an array went from O(n) sequential to O(log n) parallel

(assuming a lot of processors and very large n)

– An exponential speed-up in theory

+ + + + + + + +

+ + + +

+ +

+

• Anything that can use results from two halves and merge them

in O(1) time has the same property…

Examples

• Maximum or minimum element

• Is there an element satisfying some property (e.g., is there a 17)?

• Left-most element satisfying some property (e.g., first 17)

– What should the recursive tasks return?

– How should we merge the results?

• Corners of a rectangle containing all points (a “bounding box”)

• Counts, for example, number of strings that start with a vowel

– This is just summing with a different base case

Reductions

• Computations of this form are called reductions (or reduces?)

• Produce single answer from collection via an associative operator

– Examples: max, count, leftmost, rightmost, sum, …

– Non-example: median

• Recursive results don’t have to be single numbers or strings.

They can be arrays or objects with multiple fields.

– Example: Histogram of test results is a variant of sum

• But some things are inherently sequential

– How we process arr[i] may depend entirely on the result of

processing arr[i-1]

Maps and Data Parallelism

• A map operates on each element of a collection independently to

create a new collection of the same size

– No combining results

– For arrays, this is so trivial some hardware has direct support

• Canonical example: Vector addition

int[] vector_add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 result = new int[arr1.length];
 FORALL(i=0; i < arr1.length; i++) {
 result[i] = arr1[i] + arr2[i];
 }
 return result;
}

Maps in ForkJoin Framework

• Even though there is no result-combining, it still helps with load

balancing to create many small tasks

– Maybe not for vector-add but for more compute-intensive maps

– The forking is O(log n) whereas theoretically other approaches

to vector-add is O(1)

class VecAdd extends RecursiveAction {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
 protected void compute(){
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 for(int i=lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi+lo)/2;
 VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
 VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
 left.fork();
 right.compute();
 left.join();
 }
 }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
 return ans;
}

Maps and Reductions

Maps and reductions: the “workhorses” of parallel programming

– By far the two most important and common patterns

• We will discuss two more advanced patterns later

– Learn to recognize when an algorithm can be written

in terms of maps and reductions

– Often Use maps and reductions to describe parallel algorithms

– Programming them becomes “trivial” with a little practice

• Exactly like sequential for-loops seem second-nature

Digression: MapReduce on Clusters

• You may have heard of Google’s “map/reduce”

– Or the open-source version Hadoop

• Idea: Perform maps/reduces on data using many machines

– The system takes care of distributing the data and managing

fault tolerance

– You just write code to map one element and reduce

elements to a combined result

• Separates how to do recursive divide-and-conquer from what

computation to perform

– Old idea in higher-order functional programming transferred

to large-scale distributed computing

– Complementary approach to declarative queries for

databases

Trees

• Maps and reductions work just fine on balanced trees

– Divide-and-conquer each child rather than array subranges

– Correct for unbalanced trees, but won’t get much speed-up

• Example: minimum element in an unsorted but balanced binary
tree in O(log n) time given enough processors

• How to do the sequential cut-off?

– Store number-of-descendants at each node (easy to maintain)

– Or could approximate it with, e.g., AVL-tree height

Linked Lists

• Can you parallelize maps or reduces over linked lists?

– Example: Increment all elements of a linked list

– Example: Sum all elements of a linked list

b c d e f

front back

• Once again, data structures matter!

• For parallelism, balanced trees generally better than lists so that
we can get to all the data exponentially faster O(log n) vs. O(n)

– Trees have the same flexibility as lists compared to arrays

