
CSE332: Data Abstractions

Lecture 15: Into to Parallelism and Concurrency

James Fogarty

Winter 2012

Including slides developed in part by

Ruth Anderson, James Fogarty, Dan Grossman

Changing a Major Assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming – everything part of one sequence

Removing this assumption creates major challenges & opportunities

– Programming: Divide work among threads of execution

and coordinate among them (i.e., synchronize their work)

– Algorithms: How can parallel activity provide speed-up

 (more throughput, more work done per unit time)

– Data structures: May need to support concurrent access

(multiple threads operating on data at the same time)

A Simplified View of History

Writing correct and efficient multithreaded code is often

much more difficult than single-threaded code

– Especially in typical languages like Java and C

– So we typically stay sequential whenever possible

From roughly 1980-2005, desktop computers

got exponentially faster at running sequential programs

– About twice as fast every couple years

But nobody knows how to continue this

– Increasing clock rate generates too much heat

– Relative cost of memory access is too high

– Still making “wires exponentially smaller” (per Moore’s “Law”),

so we put multiple processors on the same chip (i.e., “multicore”)

What to do with Multiple Processors?

• Next computer you buy will likely have 4 processors

– Wait a few years and it will be 8, 16, 32, …

– The chip companies have decided to do this (it is not a “law”)

• What can you do with them?

– Run multiple totally different programs at the same time

• Already do that? Yes, but with time-slicing

– Do multiple things at once in one program

• This will be our focus, and it is more difficult

• Requires rethinking everything from asymptotic

complexity to how to implement data-structure operations

Parallelism vs. Concurrency

Note: Terms not yet standard but the perspective is essential

– Many programmers confuse these concepts

There is some connection:

– Common to use threads for both

– If parallel computations need access to shared resources,

then the concurrency needs to be managed

Parallelism:

 Use extra resources to

 solve a problem faster

resources

Concurrency:

 Correctly and efficiently manage

 access to shared resources

requests work

resource

An Analogy

CS1 idea: A program is like a recipe for a cook

– One cook who does one thing at a time!

Parallelism:

– Have lots of potatoes to slice?

– Hire helpers, hand out potatoes and knives

– But too many chefs and you spend all your time coordinating

Concurrency:

– Lots of cooks making different things,

but only 4 stove burners in the kitchen

– Want to allow access to all 4 burners,

but not cause spills or incorrect burner settings

Parallelism Example
Parallelism: Use extra resources to solve a problem faster

 (increasing throughput via simultaneous execution)

Pseudocode for array sum

– No ‘FORALL’ construct in Java, but we will see something similar

– Bad style for reasons we’ll see, but may get roughly 4x speedup

int sum(int[] arr){
 result = new int[4];
 len = arr.length;
 FORALL(i=0; i < 4; i++) { //parallel iterations
 result[i] = sumRange(arr,i*len/4,(i+1)*len/4);
 }
 return result[0]+result[1]+result[2]+result[3];

}

int sumRange(int[] arr, int lo, int hi) {

 result = 0;

 for(j=lo; j < hi; j++)

 result += arr[j];

 return result;

}

Concurrency Example

Concurrency: Correctly and efficiently manage access to shared resources

 (from multiple possibly-simultaneous clients)

Pseudocode for a shared chaining hashtable

– Prevent bad interleavings (critical ensure correctness)

– But allow some concurrent access (critical to preserve performance)

class Hashtable<K,V> {
 …
 void insert(K key, V value) {
 int bucket = …;
 prevent-other-inserts/lookups in table[bucket]
 do the insertion
 re-enable access to arr[bucket]
 }
 V lookup(K key) {
 (similar to insert,
 but can allow concurrent lookups to same bucket)
 }
}

Shared Memory with Threads

The model we will assume is shared memory with explicit threads

Old story: A running program has

– One program counter (the current statement that is executing)

– One call stack (with each stack frame holding local variables)

– Objects in the heap created by memory allocation (i.e., new)

(same name, but no relation to the heap data structure)

– Static fields in the class shared among objects

New story:

– A set of threads, each with a program and call stack

• No access to another thread’s local variables

– Threads can implicitly share objects and static fields

• To communicate among threads,

write values to a shared location that another thread reads

Old Story: Single-Threaded

…

Heap for all objects

and static fields
Call stack with local variables

Program counter for current statement

Local variables are primitives or heap references

pc=…

…

New Story: Shared Memory with Threads

…

Heap for all objects

and static fields,

shared by all threads
Threads, each with own unshared

call stack and “program counter”

pc=…

…

pc=…

…

pc=…

…

Other Models

We will focus on shared memory, but you should know several

other models exist and have their own advantages

• Message-passing: Each thread has its own collection of objects.

Communication is via explicitly sending/receiving messages

– Cooks working in separate kitchens, mail around ingredients

• Dataflow: Programmers write programs in terms of a DAG.

 A node executes after all of its predecessors in the graph

– Cooks wait to be handed results of previous steps

• Data parallelism: Have primitives for things like

“apply function to every element of an array in parallel”

Our Needs

To write a shared-memory parallel program, need new primitives

from a programming language or library

• Ways to create and run multiple things at once

– Let’s call these things threads

• Ways for threads to share memory

– Often just have threads with references to the same objects

• Ways for threads to coordinate (a.k.a. synchronize)

– For now, a way for one thread to wait for another to finish

– Other primitives when we study concurrency

Java Basics

First learn some basics built into Java via java.lang.Thread

– Then we will learn a better library for parallel programming

To get a new thread running:

1. Define a subclass C of java.lang.Thread, overriding run

2. Create an object of class C

3. Call that object’s start method

• start sets off a new thread, using run as its “main”

What if we instead called the run method of C?

– This would just be a normal method call, in the current thread

Then see how to share memory and coordinate via an example…

Parallelism Idea

• Example: Sum elements of a large array

• Idea Have 4 threads simultaneously sum 1/4 of the array

– Warning: This is the inferior first approach, do not do this

 ans0 ans1 ans2 ans3

 +

 ans

– Create 4 thread objects, each given a portion of the work

– Call start() on each thread object to actually run it in parallel

– Somehow ‘wait’ for threads to finish

– Add together their 4 answers for the final result

First Attempt: The Thread

class SumThread extends java.lang.Thread {

 int lo; // arguments
 int hi;
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run() { //override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

Because we override a no-arguments/no-result run,

we use fields to communicate data across threads

First Attempt: Creating Threads (wrong)

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++) // do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

Second Attempt: Starting Threads (still wrong)

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start(); // start not run
 }
 for(int i=0; i < 4; i++) // combine results
 ans += ts[i].ans;
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

Join: Our ‘Wait for Thread’ Method

• The Thread class defines various methods that provide

primitive operations you could not implement on your own

– For example: start, which calls run in a new thread

• The join method is another such method,

essential for coordination in this kind of computation

– Caller blocks until/unless the receiver is done executing
(meaning its run method returns after its execution)

– Without join, we would have a ‘race condition’ on ts[i].ans

• In short, problem if variable can be read/written simultaneously

• This style of parallel programming is called “fork/join”

– If we write in this style, we avoid many concurrency issues

– But certainly not all of them

Third Attempt: Correct in Spirit

int sum(int[] arr){ // can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start();
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

class SumThread extends java.lang.Thread {
 int lo, int hi, int[] arr; // arguments
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ … } // override
}

Shared Memory?

• Fork-join programs thankfully do not require

a lot of focus on sharing memory among threads

• But in languages like Java, there is memory being shared

• In our example:

– lo, hi, arr fields written by “main” thread, read by helper thread

– ans field written by helper thread, read by “main” thread

• When using shared memory, you must avoid race conditions

– While studying parallelism, we’ll stick with join

– With concurrency, we’ll learn other ways to synchronize

