CSE332: Data Abstractions

Lecture 13: Graph Traversal / Topological Sort

James Fogarty
Winter 2012

Including slides developed in part by
Ruth Anderson, James Fogarty, Dan Grossman, Richard Ladner, Steve Seitz

Midterm Question 1b

for(i1 =1; 1 <=n; 1 =1 * 2) {
for(j = 0; J < i; J++) {
sum++;
}

Forn = 64, outer loop will set i to values: 1, 2, 4, 8, 16, 32, 64

sum Wwill have finalvalue1+2+4+8+16+32+64=2n - 1

Style Points

« There will be more opportunities to lose style points on Project 2
— But here are some common issues in Project 1 code

* Indentation. Be consistent about tabs versus spaces.

— Look at your code in a non-Eclipse editor and
make sure it looks right (e.g., emacs, vim, notepad)

Style Points

« There will be more opportunities to lose style points on Project 2
— But here are some common issues in Project 1 code

« Remember your 142 / 143 style rules

— Constants should be constant and capitalized
private static final int INITIAL ARRAY SIZE = 10;

— Use proper Java naming conventions
camelCase

— Give useful names to variables and methods
a Is not an acceptable name for your inner array

Style Points

« There will be more opportunities to lose style points on Project 2
— But here are some common issues in Project 1 code

« Remember your 142 / 143 style rules

— Comments! Write them!
« They are not just for public methods

« Many of you missing them for private methods, inner classes
* This is not a helpful comment

// constructor
public ArrayStack() {

}

Style Points

« There will be more opportunities to lose style points on Project 2
— But here are some common issues in Project 1 code

« Remember your 142 / 143 style rules

— Comments! Write them!
» Useful to frame comments in terms of pre/post conditions
— The expected input (valid ranges for each parameter)
— Under what conditions exceptions will thrown
— What will be returned

« Also comment complex sections of code, as you will not
remember exactly what you were doing 6 weeks later

Style Points

There will be more opportunities to lose style points on Project 2
— But here are some common issues in Project 1 code

Remember your 142 / 143 style rules

— Boolean zen

1f (size == 0) { vVS. return size == 0;
return true;
} else {

return false;

}

Style Points

There will be more opportunities to lose style points on Project 2
— But here are some common issues in Project 1 code

Remember your 142 / 143 style rules

— Boolean zen

1f (size == 0) { vVS. return size == 0;
return true;
} else {

return false;

}

Style Points

There will be more opportunities to lose style points on Project 2
— But here are some common issues in Project 1 code

« Do not use unnecessary fields that introduce more potential errors

— No need for size inthe ListStack if you only use it to check
whether the list was empty (i.e., just check if head IS null)

* Whitespace can be beautiful! Use it appropriately for readability
return size==0?true:false; Isbad zen and hard to read

* Do not delay the write up until 30 minutes before the project is due
— It will be a worth a substantial chunk of your points
— Your responses will not be up to par

Adjacency Matrix Properties

* Running time to:
— Get a vertex’s out-edges: O(|V|)
— Get a vertex’s in-edges: O(|V|)
— Decide if some edge exists: O(1)
— Insert an edge: O(1)
— Delete an edge: O(1)

« Space requirements:
— |V/|? bits

« Best for sparse or dense graphs?
— Best for dense graphs

o O W >

T

. . . A 181/
Adjacency List Properties
B A
* Running time to:
C —+ D

Get all of a vertex’s out-edges:
O(d) where d is out-degree of vertex D /
Get all of a vertex’s in-edges:
O(|E|) (but could keep a second adjacency list for this!)
Decide if some edge exists:

O(d) where d is out-degree of source

Insert an edge: O(1) (unless you need to check if it's there)
Delete an edge: O(d) where d is out-degree of source

« Space requirements:
— O(IVI+[E])

» Best for dense or sparse graphs?

Best for sparse graphs, so usually just stick with linked lists

Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs
« Matrix: Could save space by using only about half the array

— How would you “get all neighbors”?
» Lists: Each edge in two lists to support efficient “get all neighbors”

Example: A B C D
A .
D A ! /
B — A »C
C Bl T T
B C T T C - D » B

Some Applications:
Moving Around Washington

Bellingham

Wenatchee Spokane

Seattle
Tacoma € ie-Fhun
Moses Lake
Olympia
Enumeclaw

Yakima Richland Pullman

YVancouver

What’s the shortest way to get from Seattle to Pullman?

Some Applications:
Moving Around Washington

Bellingham

Wenatchee Spokane

Seattle
Tacoma € ie-Fhun
Moses Lake
Olympia
Enumeclaw

Yakima Richland Pullman

YVancouver

What’s the fastest way to get from Seattle to Pullman?

Some Applications:
Reliability of Communication

Bellingham

Seattle Wenatchee Spokane

Tacoma
Moses Lake

Olympia

Enumclaw

Yakima Richland Pullman

Vancouver

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

Some Applications:
Bus Routes in Downtown Seattle

4th

3rd ’—L_ ’—l_
2nd T—
1st o — "—O__..l"_—o

U U - - %
5 x 2. =. 5
® (@ @] < o0
-’ @® O
n o

Z.

<

If we’re at 379 and Pine, how can we get to
15t and University using Metro?
How about 4" and Seneca?

Graph Traversals

For an arbitrary graph and a starting node v,
find all nodes reachable from v (i.e., there exists a path)

— Possibly “do something” for each node
— e.g., print to output, set some field, return from iterator, etc.

Related Problems:
* Is an undirected graph connected?
» |s a directed graph weakly / strongly connected?
— For strongly, need a cycle back to starting node

Basic ldea:
— Keep following nodes

— But “mark” nodes after visiting them, so the traversal
terminates and processes each reachable node exactly once

Abstract Idea

traverseGraph (Node start) ({
Set pending = emptySet() ;
pending.add(start)
mark start as visited
while (pending is not empty) {
next = pending.remove ()
for each node u adjacent to next
if(u is not marked) {
mark u
pending.add (u)

Why do we need to mark nodes?

Running Time and Options

« Assuming add and remove are O(1), entire traversal is O(|E|)
— Use an adjacency list representation

 The order we traverse depends entirely on add and remove
— Popular choice: a stack “depth-first graph search” “DFS”
— Popular choice: a queue “breadth-first graph search” “BFS”

« DFS and BFS are “big ideas” in computer science

— Depth: recursively explore one part
before going back to the other parts not yet explored

— Breadth: Explore areas closer to the start node first

Recursive DFS, Example with Tree

 Atreeis a graph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
if u is not marked
DF'S (u)

 Order processed: A,B,D,E,C,F, G, H
« Exactly what we called a “pre-order traversal” for trees

— The marking is because we support arbitrary graphs
and we want to process each node exactly once

DFS with Stack, Example with Tree

DFS2 (Node start) {

initialize
mark start
while (s 1is

for each
i1f(u is

next = s.

stack s to hold start
as visited

not empty) {

pop() // and “process”
node u adjacent to next
not marked)

mark u and push onto s

Order processed: A, C,F, H,G,B,E, D
A different but perfectly fine traversal

BFS with Queue, Example with Tree

BFS (Node start) {
initialize queue q to hold start
mark start as visited
while (g is not empty) ({
next = gq.dequeue() // and “process”
for each node u adjacent to next
if(u is not marked)
mark u and enqueue onto g

* Order processed: A,B,C,D,E, F, G, H
* A ‘level-order” traversal

Comparison

» Breadth-first always finds shortest paths, i.e. “optimal solutions’
— Better for “what is the shortest path from x to y”

« But depth-first can use less space in finding a path

— If longest path in the graph is p and highest out-degree is d
then DFS stack never has more than d*p elements

— But a queue for BFS may hold O(|V|) nodes

* A third approach:
— Iterative deepening (IDFS):
« Try DFS up to recursion of K levels deep.
« If that fails, increment K and start the entire search over

— Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

« Our graph traversals can answer the reachability question:
— “Is there a path from node x to node y?”

« But what if we want to actually output the path?

 Easy:

— Instead of just “marking” a node, store the previous node
along the path (when processing u causes us to add v to the
search, set v.path field to be u)

— When you reach the goal, follow path fields back to where
you started (and then reverse the answer)

Example using BFS

What is a path from Seattle to Austin
— Remember marked nodes are not re-enqueued
— Note shortest paths may not be unigue

0 > \1 Chicago

Seattle

Austin

San Francisco 5

Dallas

Disclaimer: Do not use for official advising purposes!
(Implies that CSE 332 is a pre-req for CSE 312 — not true)

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order
such that if no vertex appears before any other vertex that has

an edgeto it

Example input: CSE 33

CsE 183

CSE 31

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

G149
T

»CSE 33

P00

Questions and Comments

Why do we perform topological sorts only on DAGS?
— Because a cycle means there is no correct answer

* |s there always a unigue answer?
— No, there can be 1 or more answers; depends on the graph

« What DAGs have exactly 1 answer?
— Lists

 Terminology: A DAG represents a partial order and
a topological sort produces a total order that is consistent with it

Uses

Figuring out how to finish your degree

Computing order in which to recompute cells in a spreadsheet

Determining the order to compile files with dependencies

In general, using a dependency graph to find an order of execution

A First Algorithm for Topological Sort

1. Label each vertex with its in-degree
— Think “write in a field in the vertex”
— You could also do this with a data structure on the side

2. While there are vertices not yet output:
a) Choose a vertex v labeled with in-degree of O
b) Output v and conceptually “remove it” from the graph

c) For each vertex u adjacent to v, decrement in-degree of u
- (i.e., u such that (v,u) in E)

Example Output:

CSE 33
@ @ CSE 31
@r »CSE 33
Cse 352
Node: 126142143 311 312 331 332 333 341 351 352 440

Removed?
In-degree:

Example Output:

CSE 33
@ @ CSE 31
@r »CSE 33
Cse 352
Node: 126142143 311 312 331 332 333 341 351 352 440

Removed?
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1

Examp|e Output: 126

CSE 33
@ @ CSE 31
@r »CSE 33
Cse 352
Node: 126142143 311 312 331 332 333 341 351 352 440

Removed? X
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1

Examp|e Output: 126

142
CSE 33
@ @ CSE 31
@r »CSE 33
Cse 352
Node: 126142143 311 312 331 332 333 341 351 352 440

Removed? Xx X
In-degree: 0 O 2 1 2 1 1 2 1 1 1 1

Examp|e Output: 126
142

CSE 33
@ @ CSE 31
@r »CSE 33
Cse 352
Node: 126142143 311 312 331 332 333 341 351 352 440

Removed? Xx X X
In-degree: 0 O 1 2 1 1 2 1 1 1 1

2
1 O 0 O O
0

Example

CsE1)~Ce 18
T

Node:

In-degree:

»CSE 33

Output: 126
142
143
311

126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X

0O O

X

2
1
0

X
1
0

2 1
1 0

Examp|e Output: 126
142

CsE 331 CsE 440 142
o CsE 341
CsE 353

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? X X X X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0 O O

0

Examp|e Output: 126
142

CsE 331 CsE 440 142
Csk 142CsE 1a3~Cse 3 | o3l
o CsE 341
CsE 353

»CSE 33

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? X X X X X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1 0 1 0 O 1 0 O 0

0 0

Examp|e Output: 126
142

CsE 331 CsE 440 142
Csk 142CsE 1a3~Cse 3 | o3l
o CsE 341
CsE 353

CSE 31 312

»CSE 33

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? X X X X X X X

In-degree: 0 O 2 1 2 1 1 2 1 1 1 1
1 0 1 0 O 1 0 O 0
0 0

Example

CsE1)~Ce 18
T

Node:

126 142 143 311 312 331 332 333 341 351

Removed? X X

In-degree:

0O O

X

2
1
0

X
1
0

X

2
1
0

X
1
0

X
1
0

»CSE 33

2
1

X
1
0

Output: 126

1
0

142
143
311
331
332
312
341

352 440

1

1
0

Example

CsE1)~Ce 18
T

Node:

In-degree:

»CSE 33

Output: 126

142
143
311
331
332
312
341
351

126 142 143 311 312 331 332 333 341 351 352 440
Removed? x X

0O O

X

2
1
0

X
1
0

X

2
1
0

X
1
0

X
1
0

2
1
0

X
1
0

X
1
0

1
0

1
0

Example

CsE1)~Ce 18
T

Node:

»CSE 33

Output: 126

142
143
311
331
332
312
341
351
333
352
440

126 142 143 311 312 331 332 333 341 351 352 440

Removed? X X

In-degree:

0O O

X

2
1
0

X
1
0

X

2
1
0

X
1
0

X
1
0

X

2
1
0

X
1
0

X
1
0

X
1
0

X
1
0

Running Time?

labelEachVertexWithItsInDegree () ;
for (ctr=0; ctr < numVertices; ctr++) {
v = findNewVertexOfDegreeZero() ;
put v next in output
for each w adjacent to v
w.indegree--;

Running Time?

labelEachVertexWithItsInDegree () ;
for (ctr=0; ctr < numVertices; ctr++) {
v = findNewVertexOfDegreeZero() ;
put v next in output
for each w adjacent to v
w.indegree--;

What is the worst-case running time?
— Initialization O(|V| + |E|) (assuming adjacency list)
— Sum of all find-new-vertex O(|V|?) (because each O(|V]))
— Sum of all decrements O(|E|) (assuming adjacency list)
— So total is O(|V|? + |E]) — not good for a sparse graph!

Doing Better

The trick is to avoid searching for a zero-degree node every time!

— Keep the “pending” zero-degree nodes in a
list, stack, queue, bag, or something

— Order we process them affects the output but not
correctness or efficiency, assuming add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue O-degree nodes
2. While queue is not empty

a) Vv =dequeue()

b) Output v and remove it from the graph

c) For each vertex u adjacentto v,
decrement the in-degree of u, if new degree is 0, enqueue it

Running Time?

labelAllAndEnqueueZeros () ;
for (ctr=0; ctr < numVertices; ctr++) {
v = dequeue () ;
put v next in output
for each w adjacent to v {
w.indegree--;
if (w.indegree==0)
enqueue (w) ;

Running Time?

labelAllAndEnqueueZeros () ;
for (ctr=0; ctr < numVertices; ctr++) {
v = dequeue () ;
put v next in output
for each w adjacent to v {
w.indegree--;
if (w.indegree==0)
enqueue (w) ;

}

— Initialization: O(|V| + |E|) (assuming adjacency list)

— Sum of all enqueues and dequeues: O(|V|)

— Sum of all decrements: O(|E|) (assuming adjacency list)
— So total is O(|E| + [V]|) — much better for sparse graph!

