
CSE332: Data Abstractions

Lecture 9: Hashing

James Fogarty

Winter 2012

Administrative

• Midterm Review Poll

• Project 2a Due Wednesday

• Homework 4 Due Friday

• Feedback Plans

Homework 2, Problem 2

99 60 40

80 20

10

700 50

85

99 60 40

80 20

10

700 50

85

Need to percolate down

X

99 60 40

80 20

10

700 50

85

Also must percolate up

X

Open Addressing: Linear Probing

• Why not use up the empty space in the table?

• Store directly in the array cell (no linked list)

• How to deal with collisions?

• If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Open Addressing: Linear Probing

• Why not use up the empty space in the table?

• Store directly in the array cell (no linked list)

• How to deal with collisions?

• If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /

Open Addressing: Linear Probing

• Why not use up the empty space in the table?

• Store directly in the array cell (no linked list)

• How to deal with collisions?

• If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

Open Addressing: Linear Probing

• Why not use up the empty space in the table?

• Store directly in the array cell (no linked list)

• How to deal with collisions?

• If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

Open Addressing: Linear Probing

• Why not use up the empty space in the table?

• Store directly in the array cell (no linked list)

• How to deal with collisions?

• If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

Open Addressing: Linear Probing

• Why not use up the empty space in the table?

• Store directly in the array cell (no linked list)

• How to deal with collisions?

• If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

Open Addressing

This is one example of open addressing

In general, open addressing means resolving

collisions by trying a sequence of other positions in the table

Trying the next spot is called probing

– We just did linear probing
h(key) + i) % TableSize

– In general have some probe function f and use

h(key) + f(i) % TableSize

Open addressing does poorly with high load factor 

– So we want larger tables

– Too many probes means we lose our O(1)

Terminology

We and the book use the terms

– “chaining” or “separate chaining”

– “open addressing”

Very confusingly,

– “open hashing” is a synonym for “chaining”

– “closed hashing” is a synonym for “open addressing”

We also do trees upside-down

Other Operations

insert finds an open table position using a probe function

What about find?

– Must use same probe function to “retrace the trail” for the data

– Unsuccessful search when reach empty position

What about delete?

– Must use “lazy” deletion. Why?

– Marker indicates “no data here, but don’t stop probing”

10  / 23 / / 16  26

Primary Clustering

It turns out linear probing is a bad idea, even though the probe

function is quick to compute (which is a good thing)

[R. Sedgewick]

Tends to produce

clusters, which lead to

long probe sequences

• Called

primary clustering

• Saw this starting in

our example

Analysis of Linear Probing

• Trivial fact: For any  < 1, linear probing will find an empty slot

– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:

 Average # of probes given  (in the limit as TableSize →)

– Unsuccessful search:

– Successful search:

• This is pretty bad: need to leave sufficient empty space in the

table to get decent performance (let’s look at a chart)

  











2
1

1
1

2

1



 












1

1
1

2

1

Analysis in Chart Form

• Linear-probing performance degrades rapidly as table gets full

– Formula assumes “large table” but point remains

• Chaining performance was linear in  and has no trouble with  > 1

Open Addressing: Quadratic Probing

• We can avoid primary clustering by changing the probe function

 (h(key) + f(i)) % TableSize

– For quadratic probing:

f(i) = i2

– So probe sequence is:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 4) % TableSize

• 3rd probe: (h(key) + 9) % TableSize

• …

• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”

Quadratic Probing Example

0

1

2

3

4

5

6

7

8

9

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

0

1

2

3

4

5

6

7

8

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Another Quadratic Probing Example

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6

Another Quadratic Probing Example

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6 76

Another Quadratic Probing Example

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76

Another Quadratic Probing Example

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Another Quadratic Probing Example

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Doh: For all n, (5 +(n*n)) % 7 is 0, 2, 5, or 6

Proof uses induction and (n2+5) % 7 = ((n-7)2+5) % 7

In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k

From Bad News to Good News

• After TableSize quadratic probes, we cycle through the same indices

• The good news:

– For prime T and 0  i,j  T/2 where i  j,

 (h(key) + i2) % T  (h(key) + j2) % T

– If T = TableSize is prime and  < ½,

quadratic probing will find an empty slot in at most T/2 probes

– If you keep  < ½, no need to detect cycles

Clustering Reconsidered

• Quadratic probing does not suffer from primary clustering:

quadratic nature quickly escapes the neighborhood

• But it’s no help if keys initially hash to the same index

– Any 2 keys that hash to the same value will have the same

series of moves after that

– Called secondary clustering

• Can avoid secondary clustering with a probe function that

depends on the key: double hashing

Open Addressing: Double Hashing

Idea: Given two good hash functions h and g,
 it is very unlikely that for some key, h(key) == g(key)

 (h(key) + f(i)) % TableSize

– For double hashing:

f(i) = i*g(key)

– So probe sequence is:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + g(key)) % TableSize

• 2nd probe: (h(key) + 2*g(key)) % TableSize

• 3rd probe: (h(key) + 3*g(key)) % TableSize

• …

• ith probe: (h(key) + i*g(key)) % TableSize

• Detail: Must make sure that g(key) cannot be 0

Double Hashing

0

1

2

3

4

5

6

7

8

9

Insert these values into the hash table

in this order. Resolve any collisions

with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

Double Hashing

0

1

2

3 13

4

5

6

7

8

9

Insert these values into the hash table

in this order. Resolve any collisions

with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

Double Hashing

0

1

2

3 13

4

5

6

7

8 28

9

Insert these values into the hash table

in this order. Resolve any collisions

with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

Double Hashing

0

1

2

3 13

4

5

6

7 33

8 28

9

Insert these values into the hash table

in this order. Resolve any collisions

with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

Double Hashing

0

1

2

3 13

4

5

6

7 33

8 28

9

Insert these values into the hash table

in this order. Resolve any collisions

with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

Double Hashing

0

1

2

3 13

4

5

6

7 33

8 28

9 147

Insert these values into the hash table

in this order. Resolve any collisions

with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

Doh:

3 + 0 = 3 3 + 15 = 18

3 + 5 = 8 3 + 20 = 23

3 + 10 = 13 3 + 25 = 28

Double Hashing Analysis

• Intuition:

 Because each probe is “jumping” by g(key) each time,

 we should both “leave the neighborhood” and

 “go different places from the same initial collision”

• But, as in quadratic probing, we could still have a problem

where we are not “safe” (infinite loop despite room in table)

• It is known that this cannot happen in at least one case:

• h(key) = key % p

• g(key) = q – (key % q)

• 2 < q < p

• p and q are prime

Where are we?

• Separate Chaining is easy

– find, delete proportional to load factor on average

– insert can be constant if just push on front of list

• Open addressing uses probing, has clustering issues as it gets full

– Why use it:

• Less memory allocation?

• Run-time overhead for list nodes; array could be faster?

• Easier data representation?

• Now:

– Growing the table when it gets too full (aka “rehashing”)

– Relation between hashing/comparing and connection to Java

Rehashing

• As with array-based stacks/queues/lists

– If table gets too full, create a bigger table and copy everything

• With chaining, we get to decide what “too full” means

– Keep load factor reasonable (e.g., < 1)?

– Consider average or max size of non-empty chains?

• For open addressing, half-full is a good rule of thumb

• New table size

– Twice-as-big is a good idea, except that won’t be prime!

– So go about twice-as-big

– Can have a list of prime numbers in your code,

since you probably will not grow more than 20-30 times,

and can then calculate after that

Rehashing

• What if we copy all data to the same indices in the new table?

– Will not work; we calculated the index based on TableSize

• Go through table, do standard insert for each into new table

– Run-time?

– O(n): Iterate through old table

• Resize is an O(n) operation, involving n calls to the hash function

– Is there some way to avoid all those hash function calls?

– Space/time tradeoff: Could store h(key) with each data item

– Growing the table is still O(n); only helps by a constant factor

Hashing and Comparing

• Our use of int key can lead to overlooking a critical detail

– We initial hash E,

– While chaining or probing, we compare to E.

• Just need equality testing (i.e., compare == 0)

• So a hash table needs a hash function and a comparator

– In Project 2, you will use two function objects

– The Java library uses a more object-oriented approach:
each object has an equals method and a hashCode method:

class Object {

 boolean equals(Object o) {…}

 int hashCode() {…}

 …

}

Equal Objects Must Hash the Same

• The Java library (and your project hash table)

make a very important assumption that clients must satisfy

• Object-oriented way of saying it:

 If a.equals(b), then we must require

a.hashCode()==b.hashCode()

• Function object way of saying it:

 If c.compare(a,b) == 0, then we must require

 h.hash(a) == h.hash(b)

• If you ever override equals

– You need to override hashCode also in a consistent way

– See CoreJava book, Chapter 5 for other “gotchas” with equals

Comparable/Comparator Have Rules Too

We have not emphasized important “rules” about comparison for:

– all our dictionaries

– sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and c,

– If compare(a,b) < 0, then compare(b,a) > 0

– If compare(a,b) == 0, then compare(b,a) == 0

– If compare(a,b) < 0 and

 compare(b,c) < 0, then compare(a,c) < 0

A Generally Good hashCode()

• int result = 17;

• foreach field f

– int fieldHashcode =

• boolean: (f ? 1: 0)

• byte, char, short, int: (int) f

• long: (int) (f ^ (f >>> 32))

• float: Float.floatToIntBits(f)

• double: Double.doubleToLongBits(f), then above

• Object: object.hashCode()

– result = 31 * result + fieldHashcode

Final Word on Hashing

• The hash table is one of the most important data structures

– Efficient find, insert, and delete

– Operations based on sort order are not so efficient

• e.g., FindMin, FindMax, predecessor

• Important to use a good hash function

– Good distribution, uses enough of key’s meaningful values

• Important to keep hash table at a good size

– Prime #, preferable  depends on type of table

• Popular topic for job interview questions

– Also many real-world applications

