CSE332: Data Abstractions

Lecture 9: Hashing

James Fogarty
Winter 2012

Administrative

« Midterm Review Poll
* Project 2a Due Wednesday
« Homework 4 Due Friday

 Feedback Plans

Homework 2, Problem 2

Need to percolate down

Open Addressing: Linear Probing

 Why not use up the empty space in the table?
« Store directly in the array cell (no linked list)
 How to deal with collisions?
 Ifh(key) is already full,

— try (h(key) + 1) TableSize. If full,

— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

© 0O N O O A WO N+ O

~N |l S~ 1 SN ' " S“"“I' S "' S“S“ "' SN YN

Open Addressing: Linear Probing

 Why not use up the empty space in the table?
« Store directly in the array cell (no linked list)
 How to deal with collisions?
 Ifh(key) is already full,

— try (h(key) + 1) TableSize. If full,

— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

© 0O N O O A WO N+ O

~N | NI SN~ I ' S“ YN YN YN |~

w
o0

~~

Open Addressing: Linear Probing

 Why not use up the empty space in the table?
« Store directly in the array cell (no linked list)
 How to deal with collisions?
 Ifh(key) is already full,

— try (h(key) + 1) TableSize. If full,

— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

© 0O N O O A WO N+ O

~N | NI SN~ I ' S“ YN YN YN |~

w
o0

[HEN
©

Open Addressing: Linear Probing

 Why not use up the empty space in the table?
« Store directly in the array cell (no linked list)
 How to deal with collisions?
 Ifh(key) is already full,

— try (h(key) + 1) TableSize. If full,

— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull...

« Example: insert 38, 19, 8, 109, 10

© 0O N O O A WO N+ O

~N |l SN 1IN ISl ~~|~]|~]0

w
o0

[HEN
©

Open Addressing: Linear Probing

 Why not use up the empty space in the table? 0 8
1 109
« Store directly in the array cell (no linked list) 2 /
3 /
* How to deal with collisions? 4 /
. 5 /

* Ifh(key) is already full,
— try (h(key) + 1) % TableSize. Iffull, 6 /
— try (h(key) + 2) % TableSize. Iffull, ! /
— try (h(key) + 3) % TableSize. Iffull... 8 38
9 19

« Example: insert 38, 19, 8, 109, 10

Open Addressing: Linear Probing

 Why not use up the empty space in the table? 0 8
1 109
« Store directly in the array cell (no linked list) 2 10
3 /
* How to deal with collisions? 4 /
. 5 /

* Ifh(key) is already full,
— try (h(key) + 1) % TableSize. Iffull, 6 /
— try (h(key) + 2) % TableSize. Iffull, ! /
— try (h(key) + 3) % TableSize. Iffull... 8 38
9 19

« Example: insert 38, 19, 8, 109, 10

Open Addressing

This is one example of open addressing

In general, open addressing means resolving
collisions by trying a sequence of other positions in the table

Trying the next spot is called probing

— We just did linear probing
h(key) + 1) % TableSize

— In general have some probe function £ and use
h(key) + £(1) % TableSize

Open addressing does poorly with high load factor A
— So we want larger tables
— Too many probes means we lose our O(1)

Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”

— “closed hashing” is a synonym for “open addressing”

We also do trees upside-down

&

Other Operations

insert finds an open table position using a probe function

What about £ind?
— Must use same probe function to “retrace the trail” for the data
— Unsuccessful search when reach empty position

What about delete?
— Must use “lazy” deletion. Why?

— Marker indicates “no data here, but don’t stop probing”

10 | * [| 23| [/ /[| 16 | % | 26

Primary Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

o rens i
L iselisti
Tends to produce o uuugmmmuummuu s
. &
clusters, which lead to o e
uu&uumwmuu PRSI
long probe sequences { oo muummuuum;iv]
L, e MR
Called mumw@mﬁuummuuumu ol
° alle s umwmm\ﬂu
primary clustering uumumwmmmuﬁ@?u wmmmmummuu
L Iy
eneie) el L
gL el e el
e Saw this starting in .mwmwuwmmwum Ly
9 Ly Jei e .ggﬁﬂgwﬁummu
our example L el ®e

LT

T L.

- umummwmmmmmmmmu
UL

IS [R. Sedgewick]

Analysis of Linear Probing

« Trvial fact: For any A < 1, linear probing will find an empty slot
— ltis “safe” in this sense: no infinite loop unless table is full

* Non-trivial facts we won’t prove:
Average # of probes given A (in the limit as TableSize —)

— Unsuccessful search:
1+

2\ (@-aY
— Successful search: 1 1

_ 1_|_—

2((1—1)]

« This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (let’s look at a chart)

Analysis in Chart Form

« Linear-probing performance degrades rapidly as table gets full
— Formula assumes “large table” but point remains

Average # of Probes

Linear Probing Linear Probing
16.00 » 350.00
14.00] 2 30000
12.00 / g 250.00
10.00 / Y= 200.00
8.00 . . O _ _
/ ———linear probing #* 150.00 ——linear probing
6.00 / not found Qv not found
4.00 %ﬁ 100.00
2.00 _/ linear prohing B 50.00 / = |inear probing
: found > '] found
0.00 < 0.00 i'/
= 00w ~N OO M O M~ = — 00 = O o 00 ™~ W = M 4 -
O O = NN NS W WS M~ O = A M~ M s o W M~ 00 M
el lellelellele] O 000 o0 oo o oo
Load Factor Load Factor

« Chaining performance was linear in A and has no trouble with 4> 1

Open Addressing: Quadratic Probing

 We can avoid primary clustering by changing the probe function

(h(key) + £(i)) % TableSize

— For quadratic probing:
f(i) = i?
— So probe sequence is:

« Ot probe: h(key) % TableSize
1stprobe: (h(key) + 1) % TableSize
2"d probe: (h(key) + 4) % TableSize
39 probe: (h(key) + 9) % TableSize

i probe: (h(key) + i?) % TableSize

» Intuition: Probes quickly “leave the neighborhood”

Quadratic Probing Example

TableSize=10

Insert:
89
18
49
58
79

© 00 N O 01 b WO N - O

Quadratic Probing Example

© 00 N O 01 b WO N - O

89

TableSize=10

Insert:
89
18
49
58
79

Quadratic Probing Example

© 00 N O 01 b WO N - O

18

89

TableSize=10

Insert:
89
18
49
58
79

Quadratic Probing Example

© 00 N O 01 b WO N - O

49

18

89

TableSize=10

Insert:
89
18
49
58
79

Quadratic Probing Example

© 00 N O 01 b WO N - O

49

58

18

89

TableSize=10

Insert:
89
18
49
58
79

Quadratic Probing Example

© 00 N O 01 b WO N - O

49

58

79

18

89

TableSize=10

Insert:
89
18
49
58
79

Another Quadratic Probing Example

o o1 A WO N L O

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 =5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing Example

o o1 A WO N L O

76

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 =5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing Example

o o1 A WO N L O

40

76

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 =5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing Example

o o1 A WO N L O

48

40

76

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 =5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing Example

o o1 A WO N L O

48

40

76

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 =5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing Example

o o1 A WO N L O

48

55

40

76

TableSize =7

Insert:
76

40

48

5

55

47

(76 % 7 = 6)
(40 % 7 =5)
(48 % 7 = 6)
(5%7=5)
(55 % 7 = 6)
(47 % 7 = 5)

Another Quadratic Probing Example

TableSize =7
0 48
1 Insert:
2 5 76 (76 % 7 = 6)
40 (40% 7 =5)
3 | 9 48 (48 % 7 = 6)
4 5 (5%7=05)
5 40 55 (55 % 7 =6)
6 -6 47 (47 % 7 =5)

Doh: Foralln, (5 +(n*n)) % 7 is 0, 2, 5, or 6

Proof uses induction and (n2+5) % 7 = ((n-7)%+5) % 7
In fact, for all c and k, (n?+c) % k ((n-k)%+c) % k

From Bad News to Good News

« After TableSize quadratic probes, we cycle through the same indices

 The good news:

— ForprimeTand0 < i,j < T/2wherei # j,
(h(key) + i?) % T # (h(key) + j%) % T

— If T = TableSize is prime and A <%,
guadratic probing will find an empty slot in at most T/2 probes

— If you keep A <%, no need to detect cycles

Clustering Reconsidered

« Quadratic probing does not suffer from primary clustering:
guadratic nature quickly escapes the neighborhood

« Butit's no help if keys initially hash to the same index

— Any 2 keys that hash to the same value will have the same
series of moves after that

— Called secondary clustering

« Can avoid secondary clustering with a probe function that
depends on the key: double hashing

Open Addressing: Double Hashing

Idea: Given two good hash functions h and g,
it is very unlikely that for some key, h(key) == g(key)

(h(key) + £(i)) % TableSize

— For double hashing:
£(1) = i*g(key)
— So probe sequence is:
« Ot probe: h(key) % TableSize
« 1stprobe: (h(key) + g(key)) % TableSize
« 2"dprobe: (h(key) + 2*g(key)) % TableSize
« 3dprobe: (h(key) + 3*g(key)) % TableSize

« " probe: (h(key) + i*g(key)) % TableSize

» Detail: Must make sure that g (key) cannot be 0

Double Hashing

© 0O N O 01 b WO DN - O

T =10 (TableSize)
Hash Functions:
h(key) = key mod T
g(key) =1 + ((key/T) mod (T-1))

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

Double Hashing

T =10 (TableSize)
Hash Functions:
h(key) = key mod T
g(key) =1 + ((key/T) mod (T-1))

13

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

© 0O N O 01 b WO DN - O

Double Hashing

T =10 (TableSize)
Hash Functions:
h(key) = key mod T
g(key) =1 + ((key/T) mod (T-1))

13

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

28

© 0O N O 01 b WO DN - O

Double Hashing

T =10 (TableSize)
Hash Functions:
h(key) = key mod T
g(key) =1 + ((key/T) mod (T-1))

13

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

33
28

© 0O N O 01 b WO DN - O

Double Hashing

T =10 (TableSize)
Hash Functions:
h(key) = key mod T
g(key) =1 + ((key/T) mod (T-1))

13

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

33
28

© 0O N O 01 b WO DN - O

Double Hashing

© 0O N O 01 b WO DN - O

13

T =10 (TableSize)
Hash Functions:
h(key) = key mod T
g(key) =1 + ((key/T) mod (T-1))

33

28

147

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13

28

33

147 Doh:

43 3+0=3 3+15=18

3+5=8 3+20=23
3+10=13 3+25=28

Double Hashing Analysis

e [ntuition:

Because each probe is “jumping” by g (key) each time,
we should both “leave the neighborhood” and
“go different places from the same initial collision”

« But, as in quadratic probing, we could still have a problem
where we are not “safe” (infinite loop despite room in table)

» [tis known that this cannot happen in at least one case:
* h(key) = key % p
*g(key) = q - (key % Q)
e2<g<wp

« p and g are prime

Where are we?

« Separate Chaining is easy
- find, delete proportional to load factor on average
— insert can be constant if just push on front of list

« Open addressing uses probing, has clustering issues as it gets full
— Why use it:
« Less memory allocation?
* Run-time overhead for list nodes; array could be faster?
« Easier data representation?

* Now:
— Growing the table when it gets too full (aka “rehashing”)
— Relation between hashing/comparing and connection to Java

Rehashing

As with array-based stacks/queues/lists
— If table gets too full, create a bigger table and copy everything

With chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

For open addressing, half-full is a good rule of thumb

New table size
— Twice-as-big is a good idea, except that won't be prime!
— S0 go about twice-as-big

— Can have a list of prime numbers in your code,
since you probably will not grow more than 20-30 times,
and can then calculate after that

Rehashing

 What if we copy all data to the same indices in the new table?
— Will not work; we calculated the index based on TableSize

« Go through table, do standard insert for each into new table
— Run-time?

— O(n): Iterate through old table

* Resize is an O(n) operation, involving n calls to the hash function
— Is there some way to avoid all those hash function calls?

— Space/time tradeoff: Could store h (key) with each data item

— Growing the table is still O(n); only helps by a constant factor

Hashing and Comparing

« Ouruse of int key can lead to overlooking a critical detall
— We initial hash E,
— While chaining or probing, we compare to E.
« Just need equality testing (i.e., compare == 0)

« So a hash table needs a hash function and a comparator
— In Project 2, you will use two function objects
— The Java library uses a more object-oriented approach:
each object has an equals method and a hashCode method:

class Object {
boolean equals (Object o) {..}
int hashCode () {..}

Equal Objects Must Hash the Same

 The Java library (and your project hash table)
make a very important assumption that clients must satisfy

* Object-oriented way of saying it:
If a.equals (b), then we must require
a.hashCode () ==b.hashCode ()

* Function object way of saying it:
If c.compare (a,b) == 0, then we must require
h.hash(a) == h.hash (b)

« If you ever override equals
— You need to override hashCode also in a consistent way
— See CoreJava book, Chapter 5 for other “gotchas” with equals

Comparable/Comparator Have Rules Too

We have not emphasized important “rules” about comparison for:
— all our dictionaries
— sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and ¢,
— If compare (a,b) < 0, then compare(b,a) > 0
— If compare (a,b) == 0, then compare(b,a) ==

— If compare (a,b) < 0and
compare (b,c) < 0, then compare(a,c) < 0

A Generally Good hashCode()

« intresult=17; -m
+ foreach field f Effective Java

— int fieldHashcode =
* boolean: (f? 1: 0)
byte, char, short, int: (int) f .
long: (int) (f * (f >>> 32)) |
float: Float.floatTolntBits(f)
double: Double.doubleToLongBits(f), then above
* Object: object.nashCode()
— result = 31 * result + fieldHashcode

Final Word on Hashing

The hash table is one of the most important data structures
— Efficient £ind, insert, and delete
— Operations based on sort order are not so efficient
* €.0.,, FindMin, FindMax, predecessor

Important to use a good hash function
— Good distribution, uses enough of key’s meaningful values

Important to keep hash table at a good size
— Prime #, preferable A depends on type of table

Popular topic for job interview questions
— Also many real-world applications

