CSE332: Data Abstractions

Lecture 7: B Trees

James Fogarty
Winter 2012
The Dictionary (a.k.a. Map) ADT

- Data:
 - Set of (key, value) pairs
 - keys must be comparable
- insert(key, value)
- find(key)
- delete(key)
- …

We will tend to emphasize the keys, don’t forget about the stored values
Comparison: The Set ADT

The Set ADT is like a Dictionary without any values
- A key is present or not (i.e., there are no repeats)

For find, insert, delete, there is little difference
- In dictionary, values are “just along for the ride”
- So same data structure ideas work for dictionaries and sets

But if your Set ADT has other important operations this may not hold
- union, intersection, is_subset
- Notice these are binary operators on sets
- There are other approaches to these kinds of operations
Dictionary Data Structures

We will see three different data structures implementing dictionaries

1. AVL trees
 - Binary search trees with *guaranteed balancing*

2. B-Trees
 - Also always balanced, but different and shallower

3. Hashtables
 - Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)
A Typical Hierarchy

A plausible configuration …

CPU

L1 Cache: 128KB = 2^{17}

L2 Cache: 2MB = 2^{21}

Main memory: 2GB = 2^{31}

Disk: 1TB = 2^{40}

- Instructions (e.g., addition): 2^{30}/sec
- Get data in L1: 2^{29}/sec = 2 insns
- Get data in L2: 2^{25}/sec = 30 insns
- Get data in main memory: 2^{22}/sec = 250 insns
- Get data from “new place” on disk: 2^{7}/sec = 8,000,000 insns
- “Streamed”: 2^{18}/sec
Morals

It is much faster to do: Than:
5 million arithmetic ops 1 disk access
2500 L2 cache accesses 1 disk access
400 main memory accesses 1 disk access

Why are computers built this way?
– Physical realities (speed of light, closeness to CPU)
– Cost (price per byte of different technologies)
– Disks get much bigger not much faster
 • Spinning at 7200 RPM accounts for much of the slowness and unlikely to spin faster in the future
– Speedup at higher levels makes lower levels relatively slower
Block and Line Size

- Moving data up the memory hierarchy is slow because of latency
 - Might as well send more, just in case
 - Send nearby memory because:
 - It is easy, we are here anyways
 - And likely to be asked for soon (locality of reference)

- Amount moved from disk to memory is called “block” or “page” size
 - Not under program control

- Amount moved from memory to cache is called the “line” size
 - Not under program control
M-ary Search Tree

- Build some sort of search tree with branching factor M:
 - Have an array of sorted children (`Node[]`)
 - Choose M to fit snugly into a disk block (1 access for array)

Perfect tree of height h has $(M^{h+1}-1)/(M-1)$ nodes (textbook, page 4)

hops for **find**: If balanced, using $\log_M n$ instead of $\log_2 n$
 - If $M=256$, that’s an 8x improvement
 - If $n = 2^{40}$ that’s 5 levels instead of 40 (i.e., 5 disk accesses)

Runtime of **find** if balanced: $O(\log_2 M \log_M n)$

(binary search children) (walk down the tree)
Problems with M-ary Search Trees

• What should the order property be?

• How would you rebalance (ideally without more disk accesses)?

• Any “useful” data at the internal nodes takes up disk-block space without being used by finds moving past it

Use the branching-factor idea, but for a different kind of balanced tree
 – Not a binary search tree
 – But still logarithmic height for any $M > 2$
B+ Trees (we will just say “B Trees”)

- Two types of nodes:
 - internal nodes and leaf nodes

- Each internal node has room for up to $M-1$ keys and M children
 - no data; all data at the leaves!

- Order property:
 - Subtree between x and y
 - Data that is $\geq x$ and $< y$
 - Notice the \geq

- Leaf has up to L sorted data items

As usual, we will ignore the presence of data in our examples

Remember it is actually not there for internal nodes
Find

- We are accustomed to data at internal nodes
- But **find** is still an easy root-to-leaf recursive algorithm
 - At each internal node do binary search on the $\leq M-1$ keys
 - At the leaf do binary search on the $\leq L$ data items
- To get logarithmic running time, we need a balance condition
Structure Properties

- **Root** (special case)
 - If tree has \(\leq L \) items, root is a leaf
 (occurs when starting up, otherwise very unusual)
 - Else has between 2 and \(M \) children

- **Internal Nodes**
 - Have between \(\lceil M/2 \rceil \) and \(M \) children (i.e., at least half full)

- **Leaf Nodes**
 - All leaves at the same depth
 - Have between \(\lceil L/2 \rceil \) and \(L \) data items (i.e., at least half full)

(Any \(M > 2 \) and \(L \) will work; *picked based on disk-block size*)
Example

Suppose $M=4$ (max # children / pointers in internal node) and $L=5$ (max # data items at leaf)

- All internal nodes have at least 2 children
- All leaves at same depth, have at least 3 data items
Balanced enough

Not hard to show height h is logarithmic in number of data items n

- Let $M > 2$ (if $M = 2$, then a list tree is legal, which is no good)

- Because all nodes are at least half full (except root may have only 2 children) and all leaves are at the same level, the minimum number of data items n for a height $h>0$ tree is...

$$n \geq 2 \left\lceil \frac{M}{2} \right\rceil^{h-1} \left\lceil \frac{L}{2} \right\rceil$$

minimum number of leaves minimum data per leaf

Exponential in height because $\lceil \frac{M}{2} \rceil > 1$
Disk Friendliness

What makes B trees so disk friendly?

- Many keys stored in one *internal node*
 - All brought into memory in one disk access
 - But only if we pick M wisely
 - Makes the binary search over M-1 keys totally worth it (insignificant compared to disk access times)

- *Internal nodes* contain only keys
 - Any *find* wants only one data item; wasteful to load unnecessary items with internal nodes
 - Only bring one *leaf* of data items into memory
 - Data-item size does not affect what M is
Maintaining Balance

- So this seems like a great data structure, and it is

- But we haven’t implemented the other dictionary operations yet
 - insert
 - delete

- As with AVL trees, the hard part is maintaining structure properties
Building a B-Tree

The empty B-Tree
(the root will be a leaf at the beginning)

$M = 3 \quad L = 3$

Simply need to keep data sorted
$M = 3 \quad L = 3$

When we ‘overflow’ a leaf, we split it into 2 leaves.
Parent gains another child.
If there is no parent, we create one.

How do we pick the new key?
Smallest element in right tree.
\[M = 3 \quad L = 3 \]
$M = 3 \quad L = 3$

Split the internal node (in this case, the root)
Note: Given the leaves and the structure of the tree, we can always fill in internal node keys; ‘the smallest value in my right branch’

$M = 3 \quad L = 3$
Insertion Algorithm

1. Insert the data in its **leaf** in sorted order

2. If the **leaf** now has \(L+1 \) items, **overflow!**
 - Split the **leaf** into two nodes:
 - Original **leaf** with \(\lceil (L+1)/2 \rceil \) smaller items
 - New **leaf** with \(\lfloor (L+1)/2 \rfloor = \lceil L/2 \rceil \) larger items
 - Attach the new child to the parent
 - Adding new key to parent in sorted order

3. If Step 2 caused the parent to have \(M+1 \) children, **overflow!**
Insertion Algorithm

3. If an **internal node** has \(M+1 \) children
 - Split the **node** into **two nodes**
 - Original **node** with \(\lceil (M+1)/2 \rceil \) smaller items
 - New **node** with \(\lfloor (M+1)/2 \rfloor = \lceil M/2 \rceil \) larger items
 - Attach the new child to the parent
 - Adding new key to parent in sorted order

Step 3 splitting could make the parent overflow too
 - *So repeat step 3 up the tree until a node does not overflow*
 - If the **root** overflows, make a new **root** with two children
 - This is the only case that increases the tree height
Worst-Case Efficiency of Insert

- Find correct leaf: $O(\log_2 M \log_M n)$
- Insert in leaf: $O(L)$
- Split leaf: $O(L)$
- Split parents all the way up to root: $O(M \log_M n)$

Total: $O(L + M \log_M n)$

But it’s not that bad:
- Splits are not that common (only required when a node is FULL, M and L are likely to be large, and after a split will be half empty)
- Splitting the root is extremely rare
- Remember disk accesses is name of the game: $O(\log_M n)$
Deletion

Deletion

$M = 3 \quad L = 3$

Let them eat cake!
Are we okay?

Dang, not half full

$M = 3 \quad L = 3$

Are you using that 14?
Can I borrow it?
$M = 3$ $L = 3$
Are you using that 12? Are you using that 18?

\(M = 3 \quad L = 3 \)
Are you using that 18/30?

\[M = 3 \quad L = 3 \]
$M = 3 \quad L = 3$
Delete(14)

$M = 3 \quad L = 3$
Delete(18)

\[M = 3 \quad L = 3 \]
$M = 3 \quad L = 3$
$M = 3 \quad L = 3$
$M = 3 \quad L = 3$
Deletion Algorithm

1. Remove the data from its leaf

2. If the leaf now has $\lceil L/2 \rceil - 1$, underflow!
 - If a neighbor has $> \lceil L/2 \rceil$ items, adopt and update parent
 - Else merge node with neighbor
 • Guaranteed to have a legal number of items
 • Parent now has one less node

3. If Step 2 caused parent to have $\lceil M/2 \rceil - 1$ children, underflow!
Deletion Algorithm

3. If an internal node has $\lceil M/2 \rceil - 1$ children
 - If a neighbor has > $\lceil M/2 \rceil$ items, adopt and update parent
 - Else merge node with neighbor
 • Guaranteed to have a legal number of items
 • Parent now has one less node, may need to continue underflowing up the tree

Fine if we merge all the way up through the root
 - Unless the root went from 2 children to 1
 - In that case, delete the root and make child the root
 - This is the only case that decreases tree height
Worst-Case Efficiency of Delete

- Find correct leaf: \(O(\log_2 M \log_M n) \)
- Remove from leaf: \(O(L) \)
- Adopt from or merge with neighbor: \(O(L) \)
- Adopt or merge all the way up to root: \(O(M \log_M n) \)

Total: \(O(L + M \log_M n) \)

But it’s not that bad:
- Merges are not that common
- Remember disk access is the name of the game: \(O(\log_M n) \)
Adoption for Insert

But can sometimes avoid splitting via adoption
- Change what leaf is correct by changing parent keys
- This is simply “borrowing” but “in reverse”
- Not necessary

Example:
B Trees in Java?

Remember you are learning deep concepts, not just trade skills

For most of our data structures, we have encouraged writing high-level and reusable code, as in Java with generics

It is worthwhile to know enough about “how Java works” and why this is probably a bad idea for B trees

- If you just want balance with worst-case logarithmic operations
 - No problem, \(M=3 \) is a 2-3 tree, \(M=4 \), is a 2-3-4 tree
- Assuming our goal is efficient number of disk accesses
 - Java has many advantages, but it wasn’t designed for this

The key issue is extra *levels of indirection*...
Naïve Approach

Even if we assume data items have `int` keys, you cannot get the data representation you want for “really big data”

```java
interface Keyed<E> {  
    int key(E);
}

class BTreeNode<E> implements Keyed<E> {  
    static final int M = 128;
    int[] keys = new int[M-1];
    BTreeNode<E>[] children = new BTreeNode[M];
    int numChildren = 0;
    ...
}

class BTreeLeaf<E> {  
    static final int L = 32;
    E[] data = (E[])new Object[L];
    int numItems = 0;
    ...
}
```
What that looks like

BTreeNode (3 objects with “header words”)

BTreeLeaf (data objects not in contiguous memory)
The moral

• The point of B trees is to keep related data in contiguous memory

• All the red references on the previous slide are inappropriate
 – As minor point, beware the extra “header words”

• But that is “the best you can do” in Java
 – Again, the advantage is generic, reusable code
 – But for your performance-critical web-index, not the way to implement your B-Tree for terabytes of data

• Other languages better support “flattening objects into arrays”

• Levels of indirection matter!
Conclusion: Balanced Trees

• Balanced trees make good dictionaries because they guarantee logarithmic-time find, insert, and delete
 – Essential and beautiful computer science
 – But only if you can maintain balance within the time bound

• AVL trees maintain balance by tracking height and allowing all children to differ in height by at most 1

• B trees maintain balance by keeping nodes at least half full and all leaves at same height

• Other great balanced trees (see text; worth knowing they exist)
 – Red-black trees: all leaves have depth within a factor of 2
 – Splay trees: self-adjusting; amortized guarantee; no extra space for height information