Reminders and Questions

• Homework 2 Due Now

• Homework 3 Posted
 – Due Friday

• Project 2 Posted
 – Group Emails Due Wednesday
 – Milestone Due Next Wednesday
The Dictionary (a.k.a. Map) ADT

- **Data:**
 - Set of (key, value) pairs
 - keys must be comparable

- **Operations:**
 - `insert(key, value)`
 - `find(key)`
 - `delete(key)`
 - ...

Insertions:
- `insert(jfogarty, ...)`
- `insert(trobison, ...)`
- `insert(hchwei90, ...)`
- `insert(jbrah, ...)`

Findings:
- `find(jfogarty)`
- `find(trobison)`
- `find(hchwei90)`
- `find(jbrah)`

Values:
- James Fogarty
- Tyler Robison
- Haochen Wei
- Jenny Abrahamson

Probably the single most common ADT in everyday programs

We will tend to emphasize the keys, don’t forget about the stored values
Simple Implementations

For dictionary with n key/value pairs

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

$log n + n$ | $log n + n$
Binary Search

Target 4

1 3 4 5 7 8 9 10
Our goal is the performance of binary search in a tree representation.
Binary Search Tree

- **Structure Property (“binary”)**
 - each node has \(\leq 2 \) children

- **Order Property**
 - all keys in left subtree are smaller than node’s key
 - all keys in right subtree are larger than node’s key
Are these BSTs?
Are these BSTs?
Insert and Find in BST

Insertion happens at leaves
Find walks down tree

insert(13)
insert(8)
insert(31)
find(17)
find(11)
Deletion – The Leaf Case

delete(17)
Deletion – The One Child Case

delete(15)
Deletion – The Two Child Case

```
delete(5)
```

What can we use to replace the 5?

- **successor** from right subtree: `findMin(node.right)`
- **predecessor** from left subtree: `findMax(node.left)`
The Need for a Balanced BST

Observation

• BST is overall great
 – The shallower, the better!

• But worst case height is $O(n)$
 – Caused by simple cases, such as pre-sorted data

Solution

Require a **Balance Condition** that will:

1. ensure depth is always $O(\log n)$ – strong enough!
2. be easy to maintain – not too strong!
Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

 Too weak!
 Height mismatch example:

2. Left and right subtrees of the root have equal height

 Too weak!
 Double chain example:
Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
 - Too strong!
 - Only perfect trees ($2^n - 1$ nodes)

4. Left and right subtrees of every node have equal *height*
 - Too strong!
 - Only perfect trees ($2^n - 1$ nodes)
The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: \(\text{balance}(\text{node}) = \text{height}(\text{node}.\text{left}) - \text{height}(\text{node}.\text{right})\)

AVL property: for every node \(x\), \(-1 \leq \text{balance}(x) \leq 1\)

• Ensures small depth
 – Can prove by showing an AVL tree of height \(h\) must have nodes exponential in \(h\)

• Efficient to maintain
 – Using single and double rotations
Calculating Height

What is the height of a tree with root \(r \)?

```java
int treeHeight(Node root) {
    if (root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
                    treeHeight(root.right));
}
```

Running time for tree with \(n \) nodes:

\(O(n) \) – single pass over tree

Very important detail of definition:

height of a null tree is -1, height of tree with a single node is 0
An AVL Tree?

This is the minimum AVL tree of height 4

Let $S(h)$ be the minimum nodes in height h

$S(h) = S(h-1) + S(h-2) + 1$

$S(-1) = 0$ \hspace{1cm} $S(2) = 4$
$S(0) = 1$ \hspace{1cm} $S(3) = 7$
$S(1) = 2$ \hspace{1cm} $S(4) = 12$

Solution of Recurrence: $S(h) \approx 1.62^h$
An AVL Tree?
AVL Tree Operations

- **AVL find:**
 - Same as BST find

- **AVL insert:**
 - Same as BST insert
 - then check balance and potentially fix the AVL tree
 - four different imbalance cases

- **AVL delete:**
 - As with insert, do the deletion and then handle imbalance
Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance

What is the only way to fix this?
Single Rotation

- *Single rotation*: The basic operation we use to rebalance
 - Move child of unbalanced node into parent position
 - Parent becomes a “other” child
 - Other subtrees move in **the only way allowed by the BST**

AVL Property violated here
Insert and Detect Potential Imbalance

1. Insert the new node (at a leaf, as in a BST)
2. For each node on the path from the new leaf to the root
 the insertion may, or may not, have changed the node’s height
3. After recursive insertion in a subtree
 detect height imbalance
 perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:
- There must be a deepest element that is imbalanced
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced
Single Rotation Example: Insert(16)
Single Rotation Example: Insert(16)
Single Rotation Example: Insert(16)
Left-Left Case

- Node imbalanced due to insertion in **left-left grandchild**
 - This is 1 of 4 possible imbalance cases
- First we did the insertion, which made **a** imbalanced

![Diagram](image)
Left-Left Case

- So we rotate at a, using BST facts: $X < b < Y < a < Z$

A single rotation restores balance at the node
- Is same height as before insertion, so ancestors now balanced
Right-Right Case

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but need different code
The Other Two Cases

Single rotations not enough for insertions left-right or right-left subtree

Simple example: insert(1), insert(6), insert(3)

First wrong idea: single rotation as before
The Other Two Cases

Single rotations not enough for insertions left-right or right-left subtree

Simple example: insert(1), insert(6), insert(3)

Second wrong idea: single rotation on child
Double Rotation

- First attempt at rotation violated the BST property
- Second attempt at rotation did not fix balance
- But if we do both, it works!

Double rotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Intuition: 3 must become root
Right-Left Case
Right-Left Case

• Height of the subtree after rebalancing is the same as before insert
 – So no ancestor in the tree will need rebalancing
• Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:
Move c to grandparent’s position
Put a, b, X, U, V, and Z in the only legal position for a BST
Left-Right Case

- Mirror image of right-left
 - No new concepts, just additional code to write
Double Rotation Example: Insert(5)
Summarizing Insert

- Insert as in a BST

- Check back up path for imbalance, which will be 1 of 4 cases:
 - node’s left-left grandchild is too tall
 - node’s left-right-right grandchild is too tall
 - node’s right-left-right grandchild is too tall
 - node’s right-right-right grandchild is too tall

- Only one case can occur, because tree was balanced before insert

- After the single or double rotation, the smallest-unbalanced subtree now has the same height as before the insertion
 - So all ancestors are now balanced
Efficiency

Worst-case complexity of \texttt{find}: \(O(\log n)\)

Worst-case complexity of \texttt{insert}: \(O(\log n)\)
 - Rotation is \(O(1)\) and there’s an \(O(\log n)\) path to root
 - Same complexity even without “one-rotation-is-enough” fact

Worst-case complexity of \texttt{buildTree}: \(O(n \log n)\)
Delete

We will not cover delete
 - Multiple snow days, something has to give

Do the delete as in a BST, then balance path up from deleted node
 - Which may be predecessor or successor

Single and double rotate based on height imbalance
 - You are coming up the shorter subtree
 - But need to pull up the taller subtree

Rotation reduces height of the tree
 - So you need to check all the way to the root

delete is also $O(\log n)$