CSE332: Data Abstractions

Lecture 5: Heaps

James Fogarty
Winter 2012
ADT: Priority Queue

- Each item has a “priority”
 - The *next* or *best* item is the one with the *lowest* priority
 - So “priority 1” should come before “priority 4”
 - Simply by convention, could also do maximum priority

- Operations:
 - *insert*
 - *deleteMin*

- *deleteMin* *returns* and *deletes* item with lowest priority
 - Can resolve ties arbitrarily
Array Representation of a Binary Heap

From node i:

- **left child**: $i \times 2$
- **right child**: $i \times 2 + 1$
- **parent**: $i / 2$

wasting index 0 is convenient for the math

Array implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Pseudocode: insert

```c
void insert(int val) {
    if (size == arr.length - 1)
        resize();
    size++;
    i = percolateUp(size, val);
    arr[i] = val;
}
```

```c
int percolateUp(int hole, int val) {
    while (hole > 1 && val < arr[hole/2])
        arr[hole] = arr[hole/2];
        hole = hole / 2;
    return hole;
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.
Pseudocode: deleteMin

```c
int deleteMin() {
    if(isEmpty()) throw...
    ans = arr[1];
    hole = percolateDown
        (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```c
int percolateDown(int hole, int val) {
    while(2*hole <= size) {
        left  = 2*hole;
        right = left + 1;
        if(arr[left] < arr[right]
            || right > size)
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```
Example

1. insert: 105, 69, 43, 32, 16, 4, 2
2. deleteMin
Other Operations

• **decreaseKey**:
 – given pointer to object in priority queue (e.g., its array index), lower its priority to p
 – Change priority and percolate up

• **increaseKey**:
 – given pointer to object in priority queue (e.g., its array index), raise its priority to p
 – Change priority and percolate down

• **remove**:
 – given pointer to object in priority queue (e.g., its array index), remove it from the queue
 – **decreaseKey** to $p = -\infty$, then **deleteMin**

What is the runtime? $O(\log n)$
Build Heap

- Suppose you have \(n \) items to put in a new priority queue
 - Sequence of \(n \) inserts, \(O(n \log n) \)

- Can we do better?
 - Above is only choice if ADT does not provide `buildHeap`

- Important issue in ADT design: how many specialized operations
 - Tradeoff: Convenience, Efficiency, Simplicity

- In this case, we are motivated by efficiency
 - We can `buildHeap` using \(O(n) \) algorithm called Floyd’s Method
Floyd’s Method

Recall our general strategy for working with the heap:
• Preserve structure property
• Break and restore heap property

1. Use our n items to make a complete tree
 – Put them in array indices 1,…,n

2. Treat it as a heap and fix the heap-order property
 – Exactly how we do this is where we gain efficiency
Floyd’s Method

Bottom-up

- Leaves are already in heap order
- Work up toward the root one level at a time

```c
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```
Example

- In tree form for readability
 - Red for nodes which are not less than descendants
 - Notice no leaves are red
 - Check/fix each non-leaf bottom-up (6 steps here)
Example

- Happens to already be less than children
Example

- 10 percolates down (and notice that 1 moves up)
Example

- Another nothing-to-do step
Example

- Percolate down as necessary (first 2, then 6)
Example

- Percolate down as necessary (the 1 again)
Example

- Percolate down as necessary (first 1, then 3, then 4)
But is it right?

• “Seems to work”
 – First we will *prove* it restores the heap property (correctness)
 – Then we will *prove* its running time (efficiency)

```java
void buildHeap() {
    for (i = size/2; i > 0; i--) {
        val = arr[i];
        hole = percolateDown(i, val);
        arr[hole] = val;
    }
}
```
Correctness

```java
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Loop Invariant: For all \(j > i\), \(arr[j]\) is less than its children

- True initially: If \(j > \text{size}/2\), then \(j\) is a leaf
 - Otherwise its left child would be at position \(> \text{size}\)
- True after one more iteration: loop body and `percolateDown` make \(arr[i]\) less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children
Efficiency

```java
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Easy argument: `buildHeap` is $O(n \log n)$ where n is `size`

- `size/2` loop iterations
- Each iteration does one `percolateDown`, each is $O(\log n)$

This is correct, but there is a “tighter” analysis of the algorithm…
Better argument: `buildHeap` is $O(n)$ where n is `size`

- `size/2` total loop iterations: $O(n)$
- $1/2$ the loop iterations percolate at most 1 step
- $1/4$ the loop iterations percolate at most 2 steps
- $1/8$ the loop iterations percolate at most 3 steps
- ...
- $((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2$ (page 4 of Weiss)
 - So at most $2 \times (\text{size}/2)$ total percolate steps: $O(n)$
Lessons from `buildHeap`

• Without `buildHeap`, our ADT already allows clients to implement their own in worst-case $O(n \log n)$
 – Worst case is inserting lower priority values later

• By providing a specialized operation internal to the data structure (with access to the internal data), we can do $O(n)$ worst case
 – Intuition: Most data is near a leaf, so better to percolate down

• Can analyze this algorithm for:
 – Correctness:
 • Non-trivial inductive proof using loop invariant
 – Efficiency:
 • First analysis easily proved it was $O(n \log n)$
 • A “tighter” analysis shows same algorithm is $O(n)$
What we are Skipping (see text if curious)

- d-heaps: have d children instead of 2
 - Makes heaps shallower, useful for heaps too big for memory
 - The same issue arises for balanced binary search trees and we will study “B-Trees”

- **merge**: given two priority queues, make one priority queue
 - How might you merge binary heaps:
 * If one heap is much smaller than the other?
 * If both are about the same size?
 - Different pointer-based data structures for priority queues support logarithmic time **merge** operation (impossible with binary heaps)