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Lecture Overview 

Largely reviewing math relevant to this course 

• Proof by induction 

• Logarithms 

• Start on Algorithm Analysis 

– How much time & space an algorithm takes to run 
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Proof via mathematical induction 

Suppose P(n) is some rule involving n 
– Example: n ≥ n/2 + 1, for all integers n ≥2 

To prove P(n) for all integers n ≥ c, it suffices to prove 
1. P(c) – called the “basis” or “base case” 
2. If P(k) then P(k+1) – called the “induction step” or 

“inductive case” 
 

Why we will care:  
 Use to show that an algorithm is correct or has a certain 

running time no matter how big a data structure or input 
value is (Our “n” will be the data structure or input size.) 
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Example 

P(n) = “the sum of the first n powers of 2 (starting 
at 20) is the next power of 2 minus 1” 

 

Theorem: P(n) holds for all integers n ≥ 1 

 

1=2-1 

1+2=4-1 

1+2+4=8-1 

So far so good… 
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Example 
Theorem: P(n) holds for all n ≥ 1 

Proof: By induction on n 

• Base case, n=1:  

• Inductive case:  If it holds for k, then it holds for k+1 

– Inductive hypothesis: Assume the sum of the first k powers of 2 is 
2k-1 

– Show, given the hypothesis, that the sum of the first (k+1) powers 
of 2 is 2k+1-1 

From our inductive hypothesis we know: 

 

Add the next power of 2 to both sides… 

 

We have what we want on the left; massage the right a bit 
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Another Example 
For all n ≥ 1 

 1+2+3+…+(n-1)+n = n(n+1)/2 

 Ex: 1+2+3+4+5+6 = 6*7/2 = 21 

Proof: By induction on n 

• Base case, n=1: 1=1*(1+1)/2 

• Inductive case: 

– Inductive hypothesis: Assume the sum of the first k integers (from 1 
up) equals k(k+1)/2 

– Show, given the hypothesis, that it holds true for the next integer 
(k+1) 

From our inductive hypothesis we know: 

 1+2+3+…+k = k(k+1)/2 

Add k+1 to both sides… 

 1+2+3+…+k +(k+1)= k(k+1)/2 + (k+1) 

We have what we want on the left; massage the right a bit 

 1+2+3+…+k +(k+1)= (k(k+1) + 2(k+1))/2 = (k2+k+2k+2)/2 = (k+1)(k+2)/2 
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Note for homework 
Proofs by induction may come up in the 

homework 

When doing them, be sure to state each part 
clearly: 

• What you’re trying to prove 

• The base case 

• The inductive case 

• The inductive hypothesis 
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Powers of 2 

• A bit is 0 or 1 

• A sequence of n bits can represent 2n distinct things 
– For example, the numbers 0 through 2n-1 

• 210 is 1024 (“about a thousand”, kilo in CSE speak) 

• 220 is “about a million”, mega in CSE speak 

• 230 is “about a billion”, giga in CSE speak 

 

Java: an int is 32 bits and signed, so “max int” is “about 
2 billion” 

          a long is 64 bits and signed, so “max long” is 263-1 
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Therefore… 

We could give a unique id to… 
 

• Every person in this room with 
 

• Every person in the U.S. with 
 

• Every person in the world with 
 

• Every person to have ever lived with 
 

• Every atom in the universe with 
 

So if a password is 128 bits long and randomly generated,  
 do you think you could guess it? 
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7 bits 
 

29 bits 
 

33 bits 
 

38 bits (estimate) 
 

250-300 bits 
 



Logarithms and Exponents 

• Since so much is binary in CS, log almost 
always means log2   

• Definition: log2 x = y iff  x = 2y 

• So, log2 1,000,000 = “a little under 20” 

Just as exponents  

grow very quickly,  

logarithms grow  

very slowly 
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Logarithms and Exponents 
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Properties of logarithms 

• log(A*B) = log A + log B 

– So log(Nk)= k log N 

• log(A/B) = log A – log B 

•      =x 

• log(log x) is written log log x 
– Grows as slowly as 22^x  grows fast 
– Ex:  

 

• (log x)(log x) is written log2x 
– It is greater than log x for all x > 2 
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Log base doesn’t matter (much) 

“Any base B log is equivalent to base 2 log 
within a constant factor” 
– And we are about to stop worrying about 

constant factors! 

– In particular, log2 x = 3.22 log10 x 

– In general, we can convert log bases via a 
constant multiplier 

– Say, to convert from base B to base A: 
   logB x = (logA x) / (logA B) 

       log10 x = (log2 x) / (log2 10) 
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Algorithm Analysis 

As the “size” of an algorithm’s input grows 
 (length of array to sort, size of queue to search, etc.): 

– How much longer does the algorithm take (time) 
– How much more memory does the algorithm need (space) 

 

We are generally concerned about approximate runtimes 
– Whether T(n)=3n+2 or T(n)=n/4+8, we say it runs in linear time 
– Common categories: 

• Constant: T(n)=1 
• Linear: T(n)=n 
• Logarithmic: T(n)=logn 
• Exponential: T(n)=2n 
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Example 
• First, what does this pseudocode return? 
     x := 0; 

     for i=1 to n do 

       for j=1 to i do 

          x := x + 3; 

     return x; 

• For any n ≥ 0, it returns 3n(n+1)/2 

• Why? 
– Consider, how many times does the inner loop run? 

– For i=1, it runs once 

– For i=2, it runs twice 

– Etc. 

– 1+2+3+…+n = n(n+1)/2 

– x gets raised by 3 each time 
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Example 

• How long does this pseudocode run? 
     x := 0; 
     for i=1 to n do 
       for j=1 to i do 
          x := x + 3; 
     return x; 
• Find running time in terms of n, for any n ≥ 0 

– Assignments, additions, simple comparisons, etc. take “1 
unit time” 
• Constant time 

– Loops take the sum of the time for their iterations 

• Say, (roughly) 2+5*(number of times inner loop runs) 
– Inner loop runs n(n+1)/2 times 
– So O(n2) time 
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Lower-order terms don’t matter for 
our purposes 

n*(n+1)/2 vs. just n2/2 
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We’ll discuss why on 
Monday 

In essence, we’re 
mostly concerned 
with behavior as n 
approaches infinity 



Big Oh (also written Big-O) 

• Big Oh is used for comparing asymptotic behavior of 
functions 

• We’ll get into the definition later, but for now: 
– ‘f(n) is O(g(n))’ roughly means 

• The function f(n) is at least as small as g(n) as they go toward infinity 
• Think of it as a ≤ for functions 

– BUT: Big Oh ignores constant factors 
• n+10 is O(n); we drop out the ‘+10’ 
• 5n is O(n); we drop out the ‘x5’ 
• The following is NOT true though: n2 is O(n) 

– Also note that ‘f(n) is O(g(n))’ gives an upper bound for f(n) 
• n is O(n2) 
• 5 is O(n) 
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Big Oh: Common Categories 
From fastest to slowest 
O(1)  constant (same as O(k) for constant k) 
O(log n) logarithmic 
O(n)  linear 
O(n log n)         “n log n” 
O(n2)  quadratic 
O(n3)  cubic 
O(nk)  polynomial (where is k is an constant) 
O(kn)  exponential (where k is any constant > 1) 
 

Usage note: “exponential” does not mean “grows really fast”, it 
means “grows at rate proportional to kn for some k>1” 
– A savings account accrues interest exponentially (k=1.01?) 
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