Where We Are

We have covered stacks, queues, priority queues, and dictionaries
- Emphasis on providing one element at a time

We will now step away from ADTs and talk about sorting algorithms

Note that we have already implicitly met sorting
- Priority Queues
- Binary Search and Binary Search Trees

Sorting benefitted and limited ADT performance

More Reasons to Sort

General technique in computing:
Preprocess the data to make subsequent operations (not just ADTs) faster

Example: Sort the data so that you can
- Find the k^{th} largest in constant time for any k
- Perform binary search to find elements in logarithmic time

Sorting's benefits depend on
- How often the data will change
- How much data there is

Real World versus Computer World

Sorting is a very general demand when dealing with data—we want it in some order
- Alphabetical list of people
- List of countries ordered by population

Moreover, we have all sorted in the real world
- Some algorithms mimic these approaches
- Others take advantage of computer abilities

Sorting Algorithms have different asymptotic and constant-factor trade-offs
- No single “best” sort for all scenarios
- Knowing “one way to sort” is not sufficient

A Comparison Sort Algorithm

We have n comparable elements in an array, and we want to rearrange them to be in *increasing order*

Input:
- An array A of data records
- A key value in each data record (maybe many fields)
- A comparison function (must be consistent and total): Given keys a and b is $a < b$, $a = b$, $a > b$?

Effect:
- Reorganize the elements of A such that for any i and j such that if $i < j$ then $A[i] \leq A[j]$
- Array A must have all the data it started with

Arrays? Just Arrays?

The algorithms we will talk about will assume that the data is an array
- Arrays allow direct index referencing
- Arrays are contiguous in memory

But data may come in a linked list
- Some algorithms can be adjusted to work with linked lists but algorithm performance will likely change (at least in constant factors)
- May be reasonable to do a $O(n)$ copy to an array and then back to a linked list
Further Concepts / Extensions

Stable sorting:
- Duplicate data is possible
- Algorithm does not change duplicate's original ordering relative to each other

In-place sorting:
- Uses at most $O(1)$ auxiliary space beyond initial array

Non-Comparison Sorting:
- Redefining the concept of comparison to improve speed

Other concepts:
- External Sorting: Too much data to fit in main memory
- Parallel Sorting: When you have multiple processors

So Many Sorts

Sorting has been one of the most active topics of algorithm research:
- What happens if we do ... instead?
- Can we eke out a slightly better constant time improvement?

Check these sites out on your own time:
- http://www.sorting-algorithms.com/
Selection Sort

Idea: At step k, find the smallest element among the unsorted elements and put it at position k.

Alternate way of saying this:
- Find smallest element, put it 1st
- Find next smallest element, put it 2nd
- Find next smallest element, put it 3rd
- ...

Loop invariant:
When loop index is i, the first i elements are the i smallest elements in sorted order.

Time:
Best: _____ Worst: _____ Average: _____

Insertion Sort

Idea: At step k, put the kth input element in the correct position among the first k elements.

Alternate way of saying this:
- Sort first element (this is easy)
- Now insert 2nd element in order
- Now insert 3rd element in order
- Now insert 4th element in order
- ...

Loop invariant:
When loop index is i, first i elements are sorted.

Time:
Best: _____ Worst: _____ Average: _____

Implementing Insertion Sort

There's a trick to doing the insertions without crazy array reshifting:

```java
void mystery(int[] arr) {
    for (int i = 1; i < arr.length; i++) {
        int tmp = arr[i];
        int j;
        for (; j > 0 && tmp < arr[j-1]; j--) {
            arr[j] = arr[j-1];
        }
        arr[j] = tmp;
    }
}
```

As with heaps, "moving the hole" is faster than unnecessary swapping (impacts constant factor).

Insertion Sort vs. Selection Sort

They are different algorithms

They solve the same problem

Have the same worst-case and average-case asymptotic complexity:
- Insertion-sort has better best-case complexity (when input is "mostly sorted")

Other algorithms are more efficient for larger arrays that are not already almost sorted:
- Insertion sort works well with small arrays
We Will NOT Cover Bubble Sort

Bubble Sort is not a good algorithm
- Poor asymptotic complexity: $O(n^2)$ average
- Not efficient with respect to constant factors
- If it is good at something, some other algorithm does the same or better

However, Bubble Sort is often taught about
- Some people teach it just because it was taught to them
- Fun article to read: Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan, SIGCSE 2003

Sorting: The Big Picture

Simple algorithms: $O(n^2)$

Fancier algorithms: $O(n \log n)$

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$

Horrible algorithms: $\Omega(n^2)$

Bogo Sort

Stooge Sort

Heap Sort

As you are seeing in Project 2, sorting with a heap is easy:
```java
buildHeap(...);
for(i=0; i < arr.length; i++)
    arr[i] = deleteMin();
```

Worst-case running time: $O(n \log n)$ Why?

We have the array-to-sort and the heap
- So this is neither an in-place or stable sort
- There's a trick to make it in-place

In-Place Heap Sort

But this reverse sorts... how to fix?
Build a maxHeap instead

"Dictionary Sorts"

We can also use a balanced tree to:
- `insert` each element: total time $O(n \log n)$
- Repeatedly `deleteMin`: total time $O(n \log n)$

But this cannot be made in-place, and it has worse constant factors than heap sort
- Both $O(n \log n)$ in worst, best, and average
- Neither parallelizes well
- Heap sort is just plain better

Do NOT even think about trying to sort with a hash table
Divide and Conquer

Very important technique in algorithm design

1. Divide problem into smaller parts
2. Independently solve the simpler parts
 - Think recursion
 - Or potential parallelism
3. Combine solution of parts to produce overall solution

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

Mergesort: Recursively sort the left half
Recursively sort the right half
Merge the two sorted halves

Quicksort: Pick a "pivot" element
Separate elements by pivot (< and >)
Recursive on the separations
Return < pivot, pivot, > pivot

Mergesort

To sort array from position \(lo \) to position \(hi \):
- If range is 1 element long, it is already sorted! (our base case)
- Else, split into two halves:
 - Sort from \(lo \) to \((hi+lo)/2 \)
 - Sort from \((hi+lo)/2 \) to \(hi \)
 - Merge the two halves together

Merging takes two sorted parts and sorts everything
- \(O(n) \) but requires auxiliary space...

Example: Focus on Merging

Start with:

```
8 2 9 4 5 3 1 6
```

After recursion:

```
2 4 8 9 1 3 5 6
```

Merge:

- Use 3 “fingers” and 1 more array
- After merge, we will copy back to the original array
Example: Focus on Merging

Start with: \[a \begin{array}{cccccc} 8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \end{array}\]

After recursion: \[a \begin{array}{cccccc} 2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \end{array}\]

Merge:
Use 3 “fingers” and 1 more array
aux \[\begin{array}{cccc} 1 & 2 & 3 & \end{array}\]

After merge, we will copy back to the original array

Example: Focus on Merging

Start with: \[a \begin{array}{cccccc} 8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \end{array}\]

After recursion: \[a \begin{array}{cccccc} 2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \end{array}\]

Merge:
Use 3 “fingers” and 1 more array
aux \[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \end{array}\]

After merge, we will copy back to the original array

Example: Focus on Merging

Start with: \[a \begin{array}{cccccc} 8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \end{array}\]

After recursion: \[a \begin{array}{cccccc} 2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \end{array}\]

Merge:
Use 3 “fingers” and 1 more array
aux \[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \end{array}\]

After merge, we will copy back to the original array

Example: Focus on Merging

Start with: \[a \begin{array}{cccccc} 8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \end{array}\]

After recursion: \[a \begin{array}{cccccc} 2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \end{array}\]

Merge:
Use 3 “fingers” and 1 more array
aux \[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \end{array}\]

After merge, we will copy back to the original array

Example: Focus on Merging

Start with: \[a \begin{array}{cccccc} 8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \end{array}\]

After recursion: \[a \begin{array}{cccccc} 2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \end{array}\]

Merge:
Use 3 “fingers” and 1 more array
aux \[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 \end{array}\]

After merge, we will copy back to the original array

Example: Focus on Merging

Start with: \[a \begin{array}{cccccc} 8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \end{array}\]

After recursion: \[a \begin{array}{cccccc} 2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \end{array}\]

Merge:
Use 3 “fingers” and 1 more array
aux \[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 8 \end{array}\]

After merge, we will copy back to the original array

Example: Focus on Merging

Start with: \[a \begin{array}{cccccc} 8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \end{array}\]

After recursion: \[a \begin{array}{cccccc} 2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \end{array}\]

Merge:
Use 3 “fingers” and 1 more array
aux \[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 8 \end{array}\]

After merge, we will copy back to the original array

Example: Focus on Merging

Start with: \[a \begin{array}{cccccc} 8 & 2 & 9 & 4 & 5 & 3 & 1 & 6 \end{array}\]

After recursion: \[a \begin{array}{cccccc} 2 & 4 & 8 & 9 & 1 & 3 & 5 & 6 \end{array}\]

Merge:
Use 3 “fingers” and 1 more array
aux \[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 8 \end{array}\]

After merge, we will copy back to the original array
Example: Focus on Merging

Start with: \[\begin{array}{cccccc}
2 & 4 & 8 & 9 & 1 & 3 \end{array} \]

After recursion: \[\begin{array}{cccccc}
2 & 4 & 8 & 9 & 1 & 3 \end{array} \]

Merge:
Use 3 “fingers” and 1 more array

After merge, we will copy back to the original array

\[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \end{array} \]

Example: Mergesort Recursion

Divide

 Merge

Divide

Merge

I Element

Mergesort: Time Saving Details

What if the final steps of our merge looked like this?

Isn't it wasteful to copy to the auxiliary array just to copy back...

Mergesort: Time Saving Details

If left-side finishes first, just stop the merge and copy back:

If right-side finishes first, copy dregs into right then copy back:

Mergesort: Space Saving Details

Simplest / Worst Implementation:
- Use a new auxiliary array of size (hi-lo) for every merge

Better Implementation
- Use a new auxiliary array of size n for every merge

Even Better Implementation
- Reuse same auxiliary array of size n for every merge

Best Implementation:
- Do not copy back after merge
- Swap usage of the original and auxiliary array (i.e., even levels move to auxiliary array, odd levels move back to original array)
- Will need one copy at end if number of stages is odd

Swapping Original & Auxiliary Array

First recurse down to lists of size 1
As we return from the recursion, swap between arrays

Arguably easier to code without using recursion at all
Mergesort Analysis
Can be made stable and in-place (complex!)

Performance:
To sort \(n \) elements, we
- Return immediately if \(n=1 \)
- Else do 2 subproblems of size \(n/2 \) and then an \(O(n) \) merge
- Recurrence relation:
 \[
 T(1) = c_1 \\
 T(n) = 2T(n/2) + c_2n
 \]

MergeSort Recurrence
For simplicity let constants be 1, no effect on asymptotic answer

\[
T(1) = 1 \\
T(n) = 2T(n/2) + n \\
 = 2(2T(n/4) + n/2) + n \\
 = 4T(n/4) + 2n \\
 = 4(2T(n/8) + n/4) + 2n \\
 = 8T(n/8) + 3n \\
 \ldots \text{ (after } k \text{ expansions)} \\
 = 2^kT(n/2^k) + kn
\]

So total is \(2^kT(n/2^k) + kn \)
where \(n/2^k = 1 \), i.e., \(\log n = k \)
That is, \(2^k n \log n \)
So \(n + n \log n \)
That is, \(O(n \log n) \)

Quicksort
Also uses divide-and-conquer
- Recursively chop into halves
- Instead of doing all the work as we merge together, we will do all the work as we recursively split into halves
- Unlike MergeSort, does not need auxiliary space

\(O(n \log n) \) on average, but \(O(n^2) \) worst-case
- MergeSort is always \(O(n \log n) \)
- So why use Quicksort at all?

Can be faster than Mergesort
- Believed by many to be faster
- Quicksort does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

Quicksort Overview
1. Pick a pivot element
2. Partition all the data into:
 A. The elements less than the pivot
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C
4. The answer is as simple as “A, B, C”

Seems easy by the details are tricky!
Example: Quicksort Recursion

```
2 4 3 1
8 9 6
2 1
9 4 6
2 1 2
3 4
1 2 3 4
5 6 8 9
```

Quicksort Details

We have not explained:

- How to pick the pivot element
 - Any choice is correct: data will end up sorted
 - But we want the two partitions to be about equal in size
- How to implement partitioning
 - In linear time
 - In-place

Pivots

- Best pivot?
 - Median
 - Halve each time

- Worst pivot?
 - Greatest/least element
 - Problem of size n - 1
 - $O(n^2)$

Quicksort: Potential Pivot Rules

When working on range arr[lo] to arr[hi-1]

Pick arr[lo] or arr[hi-1]
- Fast but worst-case occurs with nearly sorted input

Pick random element in the range
- Does as well as any technique
- But random number generation can be slow
- Still probably the most elegant approach

Determine median of entire range
- Takes $O(n)$ time!

Median of 3, (e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2])
- Common heuristic that tends to work well

Partitioning

Conceptually easy, but hard to correctly code
- Need to partition in linear time in-place

One approach (there are slightly fancier ones):

Swap pivot with arr[lo]

Use two fingers i and j, starting at lo+1 and hi-1 while (i < j)

if (arr[j] >= pivot) j--
else if (arr[i] =< pivot) i++
else swap arr[i] with arr[j]

Swap pivot with arr[lo]

Quicksort Example

Step One:
Pick Pivot as Median of 3
lo = 0, hi = 10

Step Two: Move Pivot to the lo Position
Quicksort Example

Now partition in place

```
6 1 2 0 3 5 7 8
```

Move fingers

```
6 1 2 0 3 5 7 8
```

Swap

```
6 1 2 0 3 5 7 8
```

Move fingers

```
6 1 2 0 3 5 7 8
```

Move pivot

```
6 1 2 0 3 5 7 8
```

This is a short example—you typically have more than one swap during partition

Quicksort Analysis

Best-case: Pivot is always the median

\[
T(0)=T(1)=1 \\
T(n)=2T(n/2) + n
\]

Linear-time partition

Same recurrence as Mergesort: \(O(n \log n) \)

Worst-case: Pivot is always smallest or largest

\[
T(0)=T(1)=1 \\
T(n) = 1T(n-1) + n
\]

Basically same recurrence as Selection Sort: \(O(n^2) \)

Average-case (e.g., with random pivot):

\(O(n \log n) \) (see text)

Quicksort Cutoffs

For small \(n \), recursion tends to cost more than a quadratic sort

- Remember asymptotic complexity is for large \(n \)
- Recursive calls add a lot of overhead for small \(n \)

Common technique: switch algorithm below a cutoff

- Rule of thumb: use insertion sort for \(n < 20 \)

Notes:

- Could also use a cutoff for merge sort
- Cutoffs are also the norm with parallel algorithms (Switch to a sequential algorithm)
- None of this affects asymptotic complexity, just real-world performance

Quicksort Cutoff Skeleton

```java
void quicksort(int[] arr, int lo, int hi)
{
    if(hi - lo < CUTOFF)
        insertionSort(arr,lo,hi);
    else
        ...
}
```

This cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree
- Smaller arrays are more likely to be nearly sorted

Linked Lists and Big Data

Mergesort can very nicely work directly on linked lists

- Heapsort and Quicksort do not
- InsertionSort and SelectionSort can too but slower

Mergesort also the sort of choice for external sorting

- Quicksort and Heapsort jump all over the array
- Mergesort scans linearly through arrays
- In-memory sorting of blocks can be combined with larger sorts
- Mergesort can leverage multiple disks

Sorting: The Big Picture

Horrible algorithms: \(\Omega(n^2) \)

- Bogo Sort
- Stooge Sort

Simple algorithms: \(O(n^2) \)

- Insertion sort
- Selection sort
- Bubble Sort

Fancier algorithms: \(O(n \log n) \)

- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: \(\Omega(n \log n) \)

Specialized algorithms: \(O(n) \)

- Bucket sort
- Radix sort
How Fast can we Sort?

Heapsort & Mergesort have $O(n \log n)$ worst-case run time
Quicksort has $O(n \log n)$ average-case run time
These bounds are all tight, actually $\Theta(n \log n)$

So maybe we can dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$
- This is unfortunately IMPOSSIBLE!
- But why?

Permutations

Assume we have n elements to sort
- For simplicity, also assume none are equal (i.e., no duplicates)
- How many permutations of the elements (possible orderings)?

Example, $n=3$

```
```

In general, n choices for first, $n-1$ for next, $n-2$ for next, etc. $\rightarrow n(n-1)(n-2)...(1) = n!$ possible orderings

Representing Every Comparison Sort

Algorithm must "find" the right answer among $n!$ possible answers
Starts "knowing nothing" and gains information with each comparison
- Intuition is that each comparison can, at best, eliminate half of the remaining possibilities

Can represent this process as a decision tree
- Nodes contain "remaining possibilities"
- Edges are "answers from a comparison"
- This is not a data structure but what our proof uses to represent "the most any algorithm could know"

Decision Tree for $n = 3$

The leaves contain all the possible orderings of a, b, c

What the Decision Tree Tells Us

Is a binary tree because
- Each comparison has 2 outcomes
- There are no duplicate elements
- Assumes algorithm does not ask redundant questions

Because any data is possible, any algorithm needs to ask enough questions to decide among all $n!$ answers
- Every answer is a leaf (no more questions to ask)
- So the tree must be big enough to have $n!$ leaves
- Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
- So no algorithm can have worst-case running time better than the height of the decision tree
Where are We Proven: No comparison sort can have worst-case better than the height of a binary tree with n! leaves

- Turns out average-case is same asymptotically
- So how tall is a binary tree with n! leaves?

Now: Show a binary tree with n! leaves has height Ω(n log n)

- n log n is the lower bound, the height must be at least this
- It could be more (in other words, a comparison sorting algorithm could take longer but can not be faster)
- Factorial function grows very quickly

Conclude that: (Comparison) Sorting is Ω(n log n)

- This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time!

Lower Bound on Height

The height of a binary tree with L leaves is at least log₂ L

So the height of our decision tree, h:

\[h \geq \log_2(n!) \]

property of binary trees

\[= \log_2(n*(n-1)*(n-2)...(2)(1)) \]

definition of factorial

\[= \log_2(n) + \log_2(n-1) + \ldots + \log_2(1) \]

property of logarithms

\[\geq \log_2(n) + \log_2(n-1) + \ldots + \log_2(n/2) \]

keep first n/2 terms

\[\geq (n/2) \log_2(n/2) \]

each of the n/2 terms left is

\[\geq (n/2) \log_2(n) - \log_2(2) \]

property of logarithms

\[\geq (1/2)n \log_2(n) - (1/2)n \]

arithmetic

\[\text{“=} \Omega(n \log n) \]

Nothing is every straightforward in computer science.

BREAKING THE Ω(N LOG N) BARRIER FOR SORTING

Sorting: The Big Picture

<table>
<thead>
<tr>
<th>Type</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple algorithms</td>
<td>O(n²)</td>
</tr>
<tr>
<td>Fancier algorithms</td>
<td>O(n log n)</td>
</tr>
<tr>
<td>Comparison lower bound</td>
<td>Ω(n log n)</td>
</tr>
<tr>
<td>Specialized algorithms</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

- Insertion sort
- Selection sort
- Bubble Sort
- Heap sort
- Merge sort
- Quick sort (avg)
- Specialized algorithms
- Bucket sort
- Radix sort

BucketSort (a.k.a. BinSort)

If all values to be sorted are known to be integers between 1 and K (or any small range),

- Create an array of size K
- Put each element in its proper bucket (a.k.a. bin)

If data is only integers, only need to store the count of how times that bucket has been used

Output result via linear pass through array of buckets

Example: K=5

Input: (5, 1, 3, 4, 2, 1, 5, 4, 5)

Output:
BucketSort (a.k.a. BinSort)
If all values to be sorted are known to be integers between 1 and K (or any small range),
Create an array of size K
Put each element in its proper bucket (a.k.a. bin)
If data is only integers, only need to store the count of how times that bucket has been used
Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 2 4 5</td>
<td>K = 5</td>
</tr>
<tr>
<td></td>
<td>Input: (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5)</td>
</tr>
<tr>
<td></td>
<td>Output:</td>
</tr>
</tbody>
</table>

Bucket Sort with Data
For data in addition to integer keys, use list at each bucket
Bucket sort illustrates a more general trick
• Imagine a heap for a small range of integer priorities

Analyzing Bucket Sort
Overall: O(n+K)
• Linear in n, but also linear in K
• Ω(\(n \log n\)) lower bound does not apply because this is not a comparison sort
Good when K is smaller (or not much larger) than n
• Do not spend time doing comparisons of duplicates
Bad when K is much larger than n
• Wasted space / time during final linear O(K) pass

Radix Sort (originated 1890 census)
Radix = “the base of a number system”
• Examples will use our familiar base 10
• Other implementations may use larger numbers (e.g., ASCII strings might use 128 or 256)
Idea:
• Bucket sort on one digit at a time
 • Number of buckets = radix
 • Starting with least significant digit, sort with Bucket Sort
 • Keeping sort stable
• Do one pass per digit
• After k passes, the last k digits are sorted

Example: Radix Sort: Pass #1

<table>
<thead>
<tr>
<th>Input data</th>
<th>After 1st pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>478 537 9</td>
<td>721 3 123 67</td>
</tr>
<tr>
<td>721 3 38 123</td>
<td>537 67 478 38 9</td>
</tr>
</tbody>
</table>

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.
Example: Radix Sort: Pass #2

<table>
<thead>
<tr>
<th>After 1st pass</th>
<th>After 2nd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>537</td>
<td>537</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>478</td>
<td>478</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Bucket sort by 10's digit

Example: Radix Sort: Pass #3

<table>
<thead>
<tr>
<th>After 2nd pass</th>
<th>After 3rd pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>721</td>
<td>38</td>
</tr>
<tr>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>537</td>
<td>537</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>478</td>
<td>478</td>
</tr>
</tbody>
</table>

Bucket sort by 10's digit

Invariant:
After k passes the low order k digits are sorted.

Analysis
Input size: \(n \)
Number of buckets = Radix: \(B \)
Number of passes = "Digits": \(P \)

Work per pass is 1 bucket sort: \(O(B + n) \)
Total work is \(O(P \cdot (B + n)) \)
Better/worse than comparison sorts? Depends on \(n \)

Example: Strings of English letters up to length 15
\[15 \times (52 + n) \]
This is less than \(n \log n \) only if \(n > 33,000 \)
Of course, cross-over point depends on constant factors of the implementations

Sorting Summary
Simple \(O(n^2) \) sorts can be fastest for small \(n \)
- Selection sort, Insertion sort (is linear for nearly-sorted)
- Both stable and in-place
- Good for "below a cut-off" to help divide-and-conquer sorts

\(O(n \log n) \) sorts
- Heapsort, in-place but not stable nor parallelizable
- Mergesort, not in-place but stable and works as external sort
- Quicksort, in-place but not stable and \(O(n^2) \) in worst-case
Often fastest, but depends on costs of comparisons/copies

\(\Omega(n \log n) \) worst and average bound for comparison sorting
Non-comparison sorts
- Bucket sort good for small number of key values
- Radix sort uses fewer buckets and more phases

Last Slide on Sorting... for now...

Best way to sort?

It depends!