
CSE 332 Data Abstractions:

B Trees and Hash Tables
Make a Complete Breakfast

Kate Deibel

Summer 2012

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 1

Project 2

 Big project… get started early

 This project gives you a lot of experience
implementing data structures specialized to
a problem

 You can work with a partner

 Please contact us soon with who you will be
working with

 Use the message board to find a partner

 Questions related to project are good
fodder for quiz sections… so ask!

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 2

Clarifying Splay Insert

insert(x):

 Find x in splay tree

 Splays it or its parent p to root

 If x is in tree, stop (no duplicates)

 Else, split tree based on root p

 If r < x, then r goes in left subtree

 If r > x, then r goes in right subtree

 Join subtrees using x as root

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 3

OR

L R

< x > x

x

L R

> x < x

x

p p

B TREES

Technically, they are called B+ trees but their name was
lowered due to concerns of grade inflation

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 4

Reality Bites

Despite our best efforts, AVL trees and
splay trees can perform poorly on very
large inputs

Why? It's the fault of hardware!

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 5

A Typical Memory Hierarchy

Main memory: 2GB = 231

L2 Cache: 2MB = 221

Disk: 1TB = 240

L1 Cache: 128KB = 217

CPU instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 insns

get data in L2: 225/sec = 30 insns

get data in main memory:

222/sec = 250 insns

get data from "new place" on disk:

27/sec = 8,000,000 insns

"streamed":

218/sec = 4096 insns

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 6

Moral of The Story

It is much faster to do:

 5 million arithmetic ops

 2500 L2 cache accesses

 400 main memory accesses

Than:

1 disk access

1 disk access

1 disk access

Accessing the disk is
EXPENSIVE!!!

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 7

M-ary Search Tree

Perfect tree of height h has (Mh+1-1)/(M-1) nodes

hops for find: Use logM n to calculate

 If M=256, that’s an 8x improvement

 If n = 240, only 5 levels instead of 40 (5 disk accesses)

Runtime of find if balanced: O(log2 M logM n)

Build a search tree with branching factor M:

 Have an array of sorted children (Node[])

 Choose M to fit snugly into a disk block (1 access for array)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 8

Problems with M-ary Search Trees

 What should the order property be?

 How would you rebalance (ideally
without more disk accesses)?

 Any "useful" data at the internal nodes
takes up disk-block space without being
used by finds moving past it

 Use the branching-factor idea, but for a
different kind of balanced tree
 Not a binary search tree

 But still logarithmic height for any M > 2

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 9

B+ Trees (will just say "B Trees")

Two types of nodes:

 Internal nodes and leaf nodes

Each internal node has room for
up to M-1 keys and M children

 All data are at the leaves!

Order property:

 Subtree between x and y
Data that is x and < y

 Notice the

Leaf has up to L sorted
data items

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 10

As usual, we will focus
only on the keys in

our examples

3 7 12 21

x<3 3x<7 21x 12x<21 7x<12

B Tree Find

We are used to data at internal nodes

But find is still an easy root-to-leaf algorithm

 At an internal node, binary search on the M-1 keys

 At the leaf do binary search on the L data items

To ensure logarithmic
running time, we need
to guarantee balance!

What should the balance condition be?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 11

3 7 12 21

x<3 3x<7 21x 12x<21 7x<12

Structure Properties

Root (special case)

 If tree has L items, root is a leaf (occurs when
starting up, otherwise very unusual)

 Otherwise, root has between 2 and M children

Internal Node

 Has between M/2 and M children (at least half full)

Leaf Node

 All leaves at the same depth

 Has between L/2 and L items (at least half full)

Any M > 2 and L will work

 Picked based on disk-block size

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 12

Example

Suppose: M=4 (max # children in internal node)
 L=5 (max # data items at leaf)

 All internal nodes have at least 2 children

 All leaves at same depth with at least 3 data items

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 13

6

8

9

10

12

14

16

17

20

22

27

28

32

34

38

39

41

44

47

49

50

60

70

19

24

1

2

4

12 44

6 20 27 34 50

Example

Note on notation:

 Inner nodes drawn horizontally

 Leaves drawn vertically to distinguish

 Includes all empty cells

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 14

6

8

9

10

12

14

16

17

20

22

27

28

32

34

38

39

41

44

47

49

50

60

70

19

24

1

2

4

12 44

6 20 27 34 50

Balanced enough

Not hard to show height h is logarithmic in number of
data items n

Let M > 2 (if M = 2, then a list tree is legal BAD!)

Because all nodes are at least half full (except root
may have only 2 children) and all leaves are at the
same level, the minimum number of data items n for
a height h>0 tree is…

 n 2 M/2 h-1 ⋅ L/2

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 15

minimum number
of leaves

minimum data
per leaf

Exponential in height
because M/2 > 1

What makes B trees so disk friendly?

Many keys stored in one internal node

 All brought into memory in one disk access

 But only if we pick M wisely

 Makes the binary search over M-1 keys worth it
(insignificant compared to disk access times)

Internal nodes contain only keys

 Any find wants only one data item; wasteful

to load unnecessary items with internal nodes

 Only bring one leaf of data items into memory

 Data-item size does not affect what M is

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 16

Maintaining Balance

So this seems like a great data structure

It is

But we haven’t implemented the other
dictionary operations yet

 insert

 delete

As with AVL trees, the hard part is
maintaining structure properties

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 17

Building a B-Tree

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 18

The empty B-Tree
(the root will be a
leaf at the beginning)

Insert(3) Insert(18) Insert(14)

3

18

3 3

14

18

Simply need to
keep the keys
sorted in a leaf

M = 3 L = 3

Insert(30)

3

14

18

3

14

18

M = 3 L = 3

30

3

14

18

30

18

???

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 19

Building a B-Tree

When we ‘overflow’ a leaf, we split it into 2 leaves

 Parent gains another child

 If there is no parent, we create one

How do we pick the new key?

 Smallest element in right subtree

Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18

Insert(15)

32

32

36

32

32

36

32

15

Split leaf
 again

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 20

M = 3 L = 3

Insert(16)

3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

16

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 21

M = 3 L = 3

18

30

18 32

32

36

3

14

15

16

15

15 32

18

Split the internal node
(in this case, the root)

???

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 22

M = 3 L = 3

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

Given the leaves and the structure of the tree, we
can always fill in internal node keys using the rule:

 What is the smallest value in my right branch?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 23

M = 3 L = 3

Insertion Algorithm

1. Insert the data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!

a. Split the leaf into two nodes:

 Original leaf with (L+1)/2 smaller items

 New leaf with (L+1)/2 = L/2 larger items

b. Attach the new child to the parent

 Adding new key to parent in sorted order

3. If Step 2 caused the parent to have M+1

children, overflow the parent!

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 24

Insertion Algorithm (cont)

4. If an internal node (parent) has M+1 kids

a. Split the node into two nodes

 Original node with (M+1)/2 smaller items

 New node with (M+1)/2 = M/2 larger items

b. Attach the new child to the parent

 Adding new key to parent in sorted order

Step 4 could make the parent overflow too

 Repeat up the tree until a node does not overflow

 If the root overflows, make a new root with two

children. This is the only the tree height inceases

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 25

Worst-Case Efficiency of Insert

Find correct leaf:

Insert in leaf:

Split leaf:

Split parents all the way to root:

Total

O(log2 M logM n)

O(L)

O(L)

O(M logM n)

O(L + M logM n)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 26

But it’s not that bad:

 Splits are rare (only if a node is FULL)

 M and L are likely to be large

 After a split, nodes will be half empty

 Splitting the root is thus extremely rare

 Reducing disk accesses is name of the game:
inserts are thus O(logM n) on average

Adoption for Insert

We can sometimes avoid splitting via a
process called adoption

Example:

 Notice correction by changing parent keys

 Implementation not necessary for efficiency

 But introduced as it leads to how deletion works

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 27

3

14

18

30

18

3

14

30

31

30

insert(31)

32 18 32

delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

36 40

18

40

45

Deletion

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 28

36

38

M = 3 L = 3

delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12

14

16

16

18

30

36 40

36

38

18

40

45

Are we okay? Dang, not half full

Are you using that 14?

Can I borrow it?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 29

M = 3 L = 3

3

12

14

16

14

18

30

36 40

36

38

18

40

45

3

12

14

16

16

18

30

36 40

36

38

18

40

45

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 30

M = 3 L = 3

delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

3

12

14

Are you using that 12? Yes

Are you using that 18? Yes

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 31

M = 3 L = 3

3

12

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

3

12

14

Oops. Not enough leaves

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 32

M = 3 L = 3

Well, let's just consolidate our
leaves since we have the room

Are you using that 18/30?

3

12

14

18

30

36 40

36

38

18

40

45

3

12

14

18

18

30

40

36

38

36

40

45

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 33

M = 3 L = 3

delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 34

M = 3 L = 3

delete(18)

3

12

18

18

30

40

36

38

36

40

45

3

12

18

30

40

36

38

36

40

45

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 35

M = 3 L = 3

Oops. Not enough in leaf

3

12

30

40

36

38

36

40

45

3

12

18

30

40

36

38

36

40

45

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 36

M = 3 L = 3

We will borrow as before Oh no. Not enough leaves
and we cannot borrow!

3

12

30

40

36

38

36

40

45

36 40

3

12

30

3

36

38

40

45

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 37

M = 3 L = 3

We have to move up a node and collapse into a new root.

36 40

3

12

30

36

38

40

45

36 40

3

12

30

3

36

38

40

45

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 38

M = 3 L = 3

Huh, the root is pretty small. Let's reduce the tree's height.

Deletion Algorithm

1. Remove the data from its leaf

2. If the leaf now has L/2 - 1, underflow!

 If a neighbor has >L/2 items,
adopt and update parent

 Else merge node with neighbor

 Guaranteed to have a legal number of items
L/2 + L/2 = L

 Parent now has one less node

1. If Step 2 caused parent to have

M/2 - 1 children, underflow!

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 39

Deletion Algorithm

4. If an internal node has M/2 - 1 children

 If a neighbor has >M/2 items, adopt and
update parent

 Else merge node with neighbor

 Guaranteed to have a legal number of items

 Parent now has one less node, may need to
continue underflowing up the tree

Fine if we merge all the way up to the root

 If the root went from 2 children to 1, delete
the root and make child the root

 This is the only case that decreases tree height

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 40

Worst-Case Efficiency of Delete

Find correct leaf:

Insert in leaf:

Split leaf:

Split parents all the way to root:

Total

O(log2 M logM n)

O(L)

O(L)

O(M logM n)

O(L + M logM n)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 41

But it’s not that bad:

 Merges are not that common

 After a merge, a node will be over half full

 Reducing disk accesses is name of the game:
deletions are thus O(logM n) on average

Implementing B Trees in Java?

Assuming our goal is efficient number of disk

accesses, Java was not designed for this

This is not a programming languages course

Still, it is worthwhile to know enough about "how

Java works" and why this is probably a bad idea

for B trees

The key issue is extra levels of indirection…

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 42

Naïve Approach

Even if we assume data items have int keys, you
cannot get the data representation you want for
"really big data"

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 43

interface Keyed<E> {

 int key(E);

}

class BTreeNode<E implements Keyed<E>> {

 static final int M = 128;

 int[] keys = new int[M-1];

 BTreeNode<E>[] children = new BTreeNode[M];

 int numChildren = 0;

 …

}

class BTreeLeaf<E> {

 static final int L = 32;

 E[] data = (E[])new Object[L];

 int numItems = 0;

 …

}

What that looks like

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 44

BTreeNode (3 objects with "header words")

70

BTreeLeaf (data objects not in contiguous memory)

20

… (larger array)

… (larger array)

L … (larger array)

M-1 12 40

M-1 12 40

The moral

The point of B trees is to keep related data in
contiguous memory

All the red references on the previous slide are
inappropriate

 As minor point, beware the extra "header words"

But that is "the best you can do" in Java

 Again, the advantage is generic, reusable code

 But for your performance-critical web-index,
not the way to implement your B-Tree for terabytes
of data

Other languages better support "flattening objects
into arrays"

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 45

HASH TABLES

The national data structure of the Netherlands

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 46

Where We Are With Dictionaries

For dictionary with n key/value pairs

 insert find delete

Unsorted linked-list O(1) O(n) O(1)

Unsorted array O(1) O(n) O(1)

Sorted linked list O(n) O(n) O(1)

Sorted array O(n) O(log n) O(n)

Balanced tree O(log n) O(log n) O(log n)

 Hash Table O(1) O(1) O(1)

 "A magical array"

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 47

Wait…

Balanced trees give O(log n) worst-case

Hash tables give O(1) on average

Constant time is better!

So why did we learn about
balanced trees?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 48

Challenge of Hash Tables

Hashing is difficult to achieve

 A hash function must be fast to calculate

 Average O(1) requires minimal collisions

Hash tables are slow for some operations
as compared to balanced trees

 FindMin, FindMax, Predecessor, and
Successor go from O(log n) to O(n)

 printSorted goes from O(n) to O(n log n)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 49

Moral

If you need to frequently use operations
based on sort order,

 Then you may prefer a balanced BST
 instead of a hash table

If the emphasis is on fast lookups,

 Then a hash table is probably better

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 50

Hash Tables

A hash table is an array of some fixed size

Basic idea:

The goal:

Aim for constant-time find, insert, and delete "on
average" under reasonable assumptions

 0

⁞

size -1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 51

Hash Tables

Basic Structure

 m possible keys (m typically large, even infinite)

 Table is expected to have only n items

 n is much less than m (often written n << m)

Many dictionaries have this property

 Compiler:
All possible identifiers allowed by the language
vs. those used in some file of one program

 Database:
All possible student names vs. students enrolled

 Artificial Intelligence:
All possible chess-board configurations vs.
those considered by the current player

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 52

An Ideal Hash Functions

 Is fast to compute

 Rarely hashes two keys to the same index

 Known as collisions

 Zero collisions often impossible in theory but
reasonably achievable in practice

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 53

 0

⁞

size -1

hash function:

index = h(key)

key space (e.g., integers, strings)

Who Hashes What

For a hash table to be generic (store elements of
type E), we need E to be:

 Comparable: order any two E (for all dictionaries)

 Hashable: convert any E to an int

When hash tables are a reusable library, the division
of responsibility involves two roles:

We will learn both roles, but most programmers "in
the real world" spend more time as clients while
understanding the library

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 54

E int table-index
collision? collision

resolution

client hash table library

More on Roles

Some ambiguity in terminology as to
which parts are "hashing"

Our view is that both are important

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 55

E int table-index
collision? collision

resolution

client hash table library

"hashing"?
"hashing"?

More on Roles

Both roles must both contribute to minimizing

collisions (heuristically)

Client should aim for different ints for the

expected item keys

 Do not "waste" any part of E or the int's 32 bits

Library should aim for putting "similar" ints in

different indices

 conversion to index is almost always "mod

table-size"

 using prime numbers for table-size is common

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 56

What to Hash?

We will focus on two most common things to
hash: ints and strings

If you have objects with several fields, it is
usually best to hash most of the "identifying
fields" to avoid collisions:

class Person {

 String firstName, middleName, lastName;

 Date birthDate;

 …

}

An inherent trade-off:

hashing-time vs. collision-avoidance

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 57

use these four values

Hashing Integers

key space = integers

Simple hash function:

 h(key) = key % TableSize

 Client: f(x) = x

 Library: g(x) = f(x) % TableSize

 Fairly fast and natural

Example:

 TableSize = 10

 Insert keys 7, 18, 41, 34, 10

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 58

0

1

2

3

4

5

6

7

8

9

7

18

41

34

10

Collision Avoidance

With (x%TableSize), number of collisions depends on

 the ints inserted

 TableSize

Larger table-size tends to help, but not always

 Example: 70, 24, 56, 43, 10
with TableSize = 10 and TableSize = 60

Technique: Pick table size to be prime. Why?

 Real-life data tends to have a pattern,

 "Multiples of 61" are probably less likely than
"multiples of 60"

 Some collision strategies do better with prime size

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 59

More Arguments for a Prime Size

If TableSize is 60 and…

 Lots of data items are multiples of 2, wasting 50% of table

 Lots of data items are multiples of 5, wasting 80% of table

 Lots of data items are multiples of 10, wasting 90% of table

If TableSize is 61…

 Collisions can still happen but 2, 4, 6, 8, … will fill in table

 Collisions can still happen, but 5, 10, 15, … will fill in table

 Collisions can still happen but 10, 20, 30, … will fill in table

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 60

A Tidbit from Number Theory
If x and y are "co-prime" (gcd(x,y) = 1),
 then (a * x) % y = (b * x) % y
 if and only if a % y = b % y

Hashing non-integer keys

If keys are not ints, the client must provide a
means to convert the key to an int

Programming Trade-off:

 Calculation speed

 Avoiding distinct keys hashing to same ints

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 61

Hashing Strings

Key space K = s0s1s2…sk-1
where si are chars: si [0, 256]

Some choices: Which ones best avoid collisions?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 62

h K = s0 % TableSize

h K = si

k−1

i=0

 % TableSize

h K = si ∙ 37
𝑖

k−1

i=0

 % TableSize

Combining Hash Functions
A few rules of thumb / tricks:

1. Use all 32 bits (be careful with negative numbers)

2. Use different overlapping bits for different parts of the hash

 This is why a factor of 37i works better than 256i

 Example: "abcde" and "ebcda"

3. When smashing two hashes into one hash, use bitwise-xor

 bitwise-and produces too many 0 bits

 bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other

resources for standard hashing functions

5. Advanced: If keys are known ahead of time, a perfect hash

can be calcualted

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 63

A Final Tidbit about Hash Functions

Hash functions are typically one-way functions:

 Calculating h(x) = y is easy/straightforward

 Calculating h-1(y) = x is difficult/impossible

This complexity of calculating the inverse of a
hash function is very useful in security/encryption

 Generating signatures of messages

 You might recognize some names:
SHA-1, MD4, MD5, etc.

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 64

COLLISION RESOLUTION

Calling a State Farm agent is not an option…

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 65

Collision Resolution

Collision:

When two keys map to the same location
in the hash table

We try to avoid it, but the number of keys
always exceeds the table size

Ergo, hash tables generally must support
some form of collision resolution

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 66

Flavors of Collision Resolution

Separate Chaining

Open Addressing

 Linear Probing

 Quadratic Probing

 Double Hashing

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 67

Terminology Warning

We and the book use the terms

 "chaining" or "separate chaining"

 "open addressing"

Very confusingly, others use the terms

 "open hashing" for "chaining"

 "closed hashing" for "open addressing"

We also do trees upside-down

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 68

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 69

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 70

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 71

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

22 /

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 72

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

22 /

86 /

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 73

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

22

86 /

12 /

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 74

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

22

86 /

12 42 /

Thoughts on Separate Chaining

Worst-case time for find?

 Linear

 But only with really bad luck or bad hash function

 Not worth avoiding (e.g., with balanced trees at each bucket)

 Keep small number of items in each bucket

 Overhead of tree balancing not worthwhile for small n

Beyond asymptotic complexity, some "data-structure
engineering" can improve constant factors

 Linked list, array, or a hybrid

 Insert at end or beginning of list

 Splay-like: Always move item to front of list

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 75

Rigorous Separate Chaining Analysis

The load factor, , of a hash table is calculated as

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

where n is the number of items currently in the table

Under chaining, the average number of elements per
bucket is ___

So if some inserts are followed by random finds, then
on average:

 Each unsuccessful find compares against ___ items

 Each successful find compares against ___ items

How big should TableSize be??

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 76

Rigorous Separate Chaining Analysis

The load factor, , of a hash table is calculated as

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

where n is the number of items currently in the table

Under chaining, the average number of elements per
bucket is

So if some inserts are followed by random finds, then
on average:

 Each unsuccessful find compares against items

 Each successful find compares against items

 If is low, find and insert likely to be O(1)

 We like to keep around 1 for separate chaining

 July 9, 2012 CSE 332 Data Abstractions, Summer 2012 77

Separate Chaining Deletion

Not too bad and quite easy

 Find in table

 Delete from bucket

Similar run-time as insert

 Sensitive to underlying
bucket structure

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 78

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

22

86 /

12 42 /

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell (no linked
list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0

1

2

3

4

5

6

7

8

9

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 79

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell (no linked
list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0

1

2

3

4

5

6

7

8 38

9

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 80

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell
(no linked list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0

1

2

3

4

5

6

7

8 38

9 19

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 81

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell
(no linked list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0 8

1

2

3

4

5

6

7

8 38

9 19

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 82

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell
(no linked list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0 8

1 79

2

3

4

5

6

7

8 38

9 19

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 83

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell
(no linked list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0 8

1 79

2 10

3

4

5

6

7

8 38

9 19

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 84

Open Addressing

This is one example of open addressing

Open addressing means resolving collisions by trying
a sequence of other positions in the table

Trying the next spot is called probing

 We just did linear probing
h(key) + i) % TableSize

 In general have some probe function f and use
h(key) + f(i) % TableSize

Open addressing does poorly with high load factor

 So we want larger tables

 Too many probes means we lose our O(1)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 85

Open Addressing: Other Operations

insert finds an open table position using a probe
function

What about find?

 Must use same probe function to "retrace the
trail" for the data

 Unsuccessful search when reach empty position

What about delete?

 Must use "lazy" deletion. Why?

 Marker indicates "data was here, keep on probing"

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 86

10 / 23 / / 16 26

Primary Clustering

It turns out linear probing is a bad idea, even
though the probe function is quick to compute
(which is a good thing)

 This tends to produce
clusters, which lead to
long probe sequences

 This is called primary
clustering

 We saw the start of a
cluster in our linear
probing example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 87

[R. Sedgewick]

Analysis of Linear Probing

Trivial fact:
For any < 1, linear probing will find an empty slot

 We are safe from an infinite loop unless table is full

Non-trivial facts (we won’t prove these):

Average # of probes given load factor

 For an unsuccessful search as TableSize → ∞:
1

2
1 +

1

(1 − 𝜆)2

 For an successful search as TableSize → ∞:
1

2
1 +

1

(1 − 𝜆)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 88

Analysis in Chart Form

Linear-probing performance degrades rapidly as
the table gets full

 The Formula does assumes a "large table" but
the point remains

Note that separate chaining performance is linear
in and has no trouble with > 1

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 89

Open Addressing: Quadratic Probing

We can avoid primary clustering by changing the
probe function from just i to f(i)

(h(key) + f(i)) % TableSize

For quadratic probing, f(i) = i2:

0th probe: (h(key) + 0) % TableSize

1st probe: (h(key) + 1) % TableSize

2nd probe: (h(key) + 4) % TableSize

3rd probe: (h(key) + 9) % TableSize

…

ith probe: (h(key) + i2) % TableSize

Intuition: Probes quickly "leave the neighborhood"

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 90

Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 91

0

1

2

3

4

5

6

7

8

9

TableSize = 10

insert(89)

Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 92

0

1

2

3

4

5

6

7

8

9 89

TableSize = 10

insert(89)

insert(18)

Quadratic Probing Example

TableSize = 10

insert(89)

insert(18)

insert(49)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 93

0

1

2

3

4

5

6

7

8 18

9 89

Quadratic Probing Example

TableSize = 10

insert(89)

insert(18)

insert(49)

49 % 10 = 9 collision!

(49 + 1) % 10 = 0

insert(58)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 94

0 49

1

2

3

4

5

6

7

8 18

9 89

Quadratic Probing Example

TableSize = 10

insert(89)

insert(18)

insert(49)

insert(58)

58 % 10 = 8 collision!

(58 + 1) % 10 = 9 collision!

(58 + 4) % 10 = 2

insert(79)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 95

0 49

1

2 58

3

4

5

6

7

8 18

9 89

Quadratic Probing Example

TableSize = 10

insert(89)

insert(18)

insert(49)

insert(58)

insert(79)

79 % 10 = 9 collision!

(79 + 1) % 10 = 0 collision!

(79 + 4) % 10 = 3

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 96

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 97

0

1

2

3

4

5

6

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 98

0

1

2

3

4

5

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 99

0

1

2

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 100

0 48

1

2

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 101

0 48

1

2 5

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 102

0 48

1

2 5

3 55

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 103

0 48

1

2 5

3 55

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

(47 + 1) % 7 = 6 collision!

(47 + 4) % 7 = 2 collision!

(47 + 9) % 7 = 0 collision!

(47 + 16) % 7 = 0 collision!

(47 + 25) % 7 = 2 collision!

Will we ever get
a 1 or 4?!?

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 104

0 48

1

2 5

3 55

4

5 40

6 76

insert(47) will always fail here. Why?

For all n, (5 + n2) % 7 is 0, 2, 5, or 6

Proof uses induction and

(5 + n2) % 7 = (5 + (n - 7)2) % 7

In fact, for all c and k,

(c + n2) % k = (c + (n - k)2) % k

From Bad News to Good News

After TableSize quadratic probes, we cycle

through the same indices

The good news:

 For prime T and 0 i, j T/2 where i j,

(h(key) + i2) % T (h(key) + j2) % T

 If TableSize is prime and < ½, quadratic

probing will find an empty slot in at most

TableSize/2 probes

 If you keep < ½, no need to detect cycles as

we just saw

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 105

Clustering Reconsidered

Quadratic probing does not suffer from primary
clustering as the quadratic nature quickly escapes
the neighborhood

But it is no help if keys initially hash the same index

 Any 2 keys that hash to the same value will have
the same series of moves after that

 Called secondary clustering

We can avoid secondary clustering with a probe
function that depends on the key: double hashing

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 106

Open Addressing: Double Hashing

Idea:

Given two good hash functions h and g, it is very
unlikely that for some key, h(key) == g(key)

Ergo, why not probe using g(key)?

For double hashing, f(i) = i ⋅ g(key):

0th probe: (h(key) + 0 ⋅ g(key)) % TableSize

1st probe: (h(key) + 1 ⋅ g(key)) % TableSize

2nd probe: (h(key) + 2 ⋅ g(key)) % TableSize

…

ith probe: (h(key) + i ⋅ g(key)) % TableSize

Crucial Detail:

We must make sure that g(key) cannot be 0

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 107

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 108

0

1

2

3

4

5

6

7

8

9

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 109

0

1

2

3 13

4

5

6

7

8

9

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 110

0

1

2

3 13

4

5

6

7

8 28

9

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33 g(33) = 1 + 3 mod 9 = 4

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 111

0

1

2

3 13

4

5

6

7 33

8 28

9

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147 g(147) = 1 + 14 mod 9 = 6

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 112

0

1

2

3 13

4

5

6

7 33

8 28

9 147

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147 g(147) = 1 + 14 mod 9 = 6

43 g(43) = 1 + 4 mod 9 = 5

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 113

0

1

2

3 13

4

5

6

7 33

8 28

9 147

We have a problem:
3 + 0 = 3 3 + 5 = 8 3 + 10 = 13
 3 + 15 = 18 3 + 20 = 23

Double Hashing Analysis

Because each probe is "jumping" by g(key) each
time, we should ideally "leave the neighborhood" and
"go different places from the same initial collision"

But, as in quadratic probing, we could still have a
problem where we are not "safe" due to an infinite
loop despite room in table

This cannot happen in at least one case:

For primes p and q such that 2 < q < p

h(key) = key % p

g(key) = q – (key % q)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 114

Summarizing Collision Resolution

Separate Chaining is easy

 find, delete proportional to load factor on average

 insert can be constant if just push on front of list

Open addressing uses probing, has clustering issues
as it gets full but still has reasons for its use:

 Easier data representation

 Less memory allocation

 Run-time overhead for list nodes (but an array
implementation could be faster)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 115

REHASHING

When you make hash from hash leftovers…

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 116

Rehashing

As with array-based stacks/queues/lists

 If table gets too full, create a bigger table and
copy everything

 Less helpful to shrink a table that is underfull

With chaining, we get to decide what "too full"
means

 Keep load factor reasonable (e.g., < 1)?

 Consider average or max size of non-empty chains

For open addressing, half-full is a good rule of thumb

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 117

Rehashing

What size should we choose?

 Twice-as-big?

 Except that won’t be prime!

We go twice-as-big but guarantee prime

 Implement by hard coding a list of prime numbers

 You probably will not grow more than 20-30 times
and can then calculate after that if necessary

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 118

Rehashing
Can we copy all data to the same indices in the new table?

 Will not work; we calculated the index based on TableSize

Rehash Algorithm:

Go through old table

Do standard insert for each item into new table

Resize is an O(n) operation,

 Iterate over old table: O(n)

 n inserts / calls to the hash function: n ⋅ O(1) = O(n)

Is there some way to avoid all those hash function calls?

 Space/time tradeoff: Could store h(key) with each data item

 Growing the table is still O(n); only helps by a constant factor

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 119

IMPLEMENTING HASHING

Reality is never as clean-cut as theory

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 120

Hashing and Comparing

Our use of int key can lead to us overlooking a
critical detail

 We do perform the initial hash on E

 While chaining/probing, we compare to E which
requires equality testing (compare == 0)

A hash table needs a hash function and a comparator

 In Project 2, you will use two function objects

 The Java library uses a more object-oriented approach:
each object has an equals method and a hashCode
method:

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 121

class Object {

 boolean equals(Object o) {…}

 int hashCode() {…}

 …

}

Equal Objects Must Hash the Same

The Java library (and your project hash table) make
a very important assumption that clients must satisfy

Object-oriented way of saying it:

If a.equals(b), then we must require

a.hashCode()==b.hashCode()

Function object way of saying it:

If c.compare(a,b) == 0, then we must require

h.hash(a) == h.hash(b)

If you ever override equals

 You need to override hashCode also in a consistent way

 See CoreJava book, Chapter 5 for other "gotchas" with equals

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 122

Comparable/Comparator Rules

We have not emphasized important "rules"
about comparison for:
 all our dictionaries

 sorting (next major topic)

Comparison must impose a consistent,
total ordering:

For all a, b, and c:

 If compare(a,b) < 0, then compare(b,a) > 0

 If compare(a,b) == 0, then compare(b,a) == 0

 If compare(a,b) < 0 and compare(b,c) < 0,
then compare(a,c) < 0

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 123

A Generally Good hashCode()

int result = 17; // start at a prime

foreach field f

 int fieldHashcode =

 boolean: (f ? 1: 0)

 byte, char, short, int: (int) f

 long: (int) (f ^ (f >>> 32))

 float: Float.floatToIntBits(f)

 double: Double.doubleToLongBits(f), then above

 Object: object.hashCode()

 result = 31 * result + fieldHashcode;

return result;

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 124

Final Word on Hashing
The hash table is one of the most important data structures

 Efficient find, insert, and delete

 Operations based on sorted order are not so efficient

 Useful in many, many real-world applications

 Popular topic for job interview questions

Important to use a good hash function

 Good distribution of key hashs

 Not overly expensive to calculate (bit shifts good!)

Important to keep hash table at a good size

 Keep TableSize a prime number

 Set a preferable depending on type of hashtable

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 125

