
Name:

CSE332, Spring 2012, Midterm Examination
April 27, 2012

Please do not turn the page until the bell rings.

Rules:

• The exam is closed-book, closed-note.

• Please stop promptly at 3:20.

• You can rip apart the pages, but please staple them back together before you leave.

• There are 100 points total, distributed unevenly among 9 questions (many with multiple parts).

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly
circle your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

• If you have questions, ask.

• Relax. You are here to learn.

1



Name:

1. (12 points) Give a big-O bound on the worst-case running time of each code fragment below in terms
of n.

• Assume integer arithmetic (division rounds down).

• Each bound should be as “tight” and “simple” as possible.

(a) for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {

for(k = 0; k < i + j - 4; k++) {

sum++;

}

}

}

(b) x = n;

while (x > 0) {

sum++;

x = x / 2;

}

(c) sum = 0;

i = 0;

j = 7n;

while(i < j) {

sum++; i++; j--;

}

(d) x = n;

while (x > 0) {

y = n;

while (y > 0) {

sum++;

y = y / 2;

}

x = x / 2;

}

(e) tree = new AVLTree();

for(i = 0; i < n; i++) {

tree.insert(foo()); // foo produces some element in O(1) time

}

sum = 0;

for(i = 0; i < n; i++) {

sum += tree.findMin();

tree.insert(foo()); // foo produces some element in O(1) time

}

Solution:
(a) O(n3) (b) O(log n) (c) O(n) (d) O(log2 n) (which means O((log n)(log n)), not O(log log n)) (e)
O(n log n)

2



Name:

2. (10 points) Assume there are two functions over n called f1(n) and f2(n) that have positive results
for all n.
Let g(n) be defined as g(n) = max(f1(n), f2(n)).
Let h(n) be defined as h(n) = f1(n) + f2(n).

(a) Using the formal definition of big-O, show that f1(n) is in O(g(n)).

(b) Using the formal definition of big-O, show that g(n) is in O(h(n)).

(c) Using the formal definition of big-O, show that h(n) is in O(g(n)).

None of your answers should require more than 1–3 sentences.

Solution:

(a) We need to give a c and n0 such that f1(n) ≤ cg(n) for all n ≥ n0. Any c ≥ 1 and n0 ≥ 0 suffices
because f1(n) ≤ max(f1(n), f2(n)) for any n.

(b) We need to give a c and n0 such that g(n) ≤ ch(n) for all n ≥ n0. Any c ≥ 1 and n0 ≥ 0 suffices
because max(f1(n), f2(n)) ≤ f1(n) + f2(n) for any n since f1(n) and f2(n) have positive results
for all n (so their sum must exceed their max).

(c) We need to give a c and n0 such that h(n) ≤ cg(n) for all n ≥ n0. Any c ≥ 2 and n0 ≥ 0
suffices because f1(n) + f2(n) ≤ 2max(f1(n), f2(n)) for any n since the definition of max ensures
f1(n) ≤ max(f1(n), f2(n)) and f2(n) ≤ max(f1(n), f2(n)).

3



Name:

3. (9 points) Recall:

• The structure property for a binary min-heap is that it is a complete binary tree.

• A complete binary tree may or may not be a perfect binary tree.

(a) What is the definition of a complete binary tree? In addition to an English sentence or two, draw
a picture to demonstrate.

(b) What is the definition of a perfect binary tree? In addition to an English sentence or two, draw
a picture to demonstrate.

(c) Complete this alternate definition of a complete binary tree. For each blank, put either a height
(e.g., h, h− 1, etc.) or a kind of tree (e.g., complete or perfect).

Any binary tree of height 0 is a perfect binary tree and therefore also a complete binary tree.

Any complete tree of height h > 0 is either:

• a root whose left child is a binary tree of height and whose
right child is a binary tree of height ,

• or a root whose left child is a binary tree of height and
whose right child is a binary tree of height .

(The two bullets above are the same, but they will not be the same after you correctly fill in the
blanks.)

Solution:

(a) A complete binary tree is a binary tree where each row of the tree is completely full except the
bottom row may be partially full, but must be full from left to right. [Picture omitted from sample
solution.]

(b) A perfect binary tree is a binary tree where each row of the tree is completely full. (A height h
tree must have 2h+1 − 1 nodes.) [Picture omitted from sample solution.]

(c) Any complete tree of height h > 0 is either:

• a root whose left child is a complete binary tree of height h− 1 and whose right child is a
perfect binary tree of height h− 2,

• or a root whose left child is a perfect binary tree of height h− 1 and whose right child is a
complete binary tree of height h− 1.

4



Name:

4. (10 points) We studied a particular way to use an array to represent a binary tree. When we
represented a binary min-heap with n elements this way, we did not waste much space because an
array of size n + 1 was enough. For a general binary tree, much more space may be wasted (unused).

(a) Using the array representation we studied, what is the largest array that might be necessary to
hold a binary tree with 5 elements?

(b) Give an example binary search tree that leads to the largest-array case for your answer to part
(a). (Draw the tree, not its array representation.)

(c) Using the array representation we studied, what is the largest array that might be necessary to
hold a tree with n elements? Answer precisely in terms of n.

Solution:

(a) 32-element array (root at index 1, right child at 3, its right child at 7, its right at 15, its right
child at index 31)

(b) Any tree with 5 nodes where there is 1 leaf, all interior nodes have only a right child, and it obeys
the BST order property. For example:

1

\

2

\

3

\

4

\

5

(c) 2n

For (a) and (c), it is okay to consistently assume that the values start at index 0 instead of index 1,
leading to answers of 31 and 2n − 1.

5



Name:

5. (16 points)

(a) There are six possible AVL trees containing elements with keys 2, 4, 6, 8, and 10. Draw all six
trees. (Each tree will have all five keys in it.)

(b) Choose one of your six trees from part (a) such that inserting an element with key 7 into it requires
no rotations. Clearly indicate what tree you start with and show the result of the insertion.

(c) Choose one of your six trees from part (a) such that inserting an element with key 7 into it
requires one single rotation. Clearly indicate what tree you start with and show the result of the
insertion.

(d) Choose one of your six trees from part (a) such that inserting an element with key 7 into it
requires one double rotation. Clearly indicate what tree you start with and show the result of the
insertion.

Solution:

(a) 4 8 6 6 6 6

/ \ / \ / \ / \ / \ / \

2 8 4 10 4 8 2 8 4 10 2 10

/ \ / \ / \ \ \ / / \ /

6 10 2 6 2 10 4 10 2 8 4 8

(b) Two correct solutions:

6 6 6 6

/ \ / \ / \ / \

4 8 -----> 4 8 2 8 -----> 2 8

/ \ / /\ \ \ \ /\

2 10 2 7 10 4 10 4 7 10

(c) Two correct solutions:

6 6 6 6

/ \ / \ / \ / \

4 10 -----> 4 8 2 10 -----> 2 8

/ / / / \ \ / \ /\

2 8 2 7 10 4 8 4 7 10

(d) Two correct solutions:

4 6 8 6

/ \ / \ / \ / \

2 8 -----> 4 8 4 10 -----> 4 8

/ \ / / \ / \ / /\

6 10 2 7 10 2 6 2 7 10

6



Name:

6. (8 points) On a homework, we investigated a clever data structure for a double-ended priority queue,
with O(log n) operations insert, deleteMin, deleteMax and O(1) operations findMin and findMax.
A colleague of yours suggests there is a simpler data structure with the same asymptotic behavior:

• Keep a binary min-heap and perform the operations on it as usual.

• Also keep a separate field that holds the index with the max element so that findMax can still
be O(1) and you know where the max element is to delete it. When inserting an element, if it is
greater than the max element, update the separate field appropriately.

This approach does not work. Which operation will require an O(n) algorithm and why?

Solution:
deleteMax will be O(n). After we delete the max element, we have to find the new max element at
least before completing the next deleteMax operation. But the next max could be in any leaf of the
binary min-heap and there are O(n) such leaves. (We can’t also store the second-max element without
having the same problem with three deleteMax operations, and if you keep a sorted list of elements
by priority, you have a much inferior priority queue implementation based on a sorted list.)

[Note the question really should have asked which operation would require an Ω(n) or Θ(n) operation
since any O(1) operation is also O(n).]

7



Name:

7. (16 points)

(a) What is the worst-case big-O running-time for the find operation in a B tree with n elements, at
most M children at an internal node, and at most L data items at a leaf?

(b) Suppose the find algorithm uses linear search instead of binary search whenever possible. Now
what is the worst-case big-O running-time?

(c) True or false and explain your answer briefly : If every leaf of a B tree is not full, then an insert

operation definitely will not require a split operation.

(d) True or false and explain your answer briefly : If every leaf of a B tree is full, then an insert

operation definitely will require a split operation.

(e) True or false and explain your answer briefly : If the root of a B tree is not full, then an insert

operation definitely will not increase the height of the tree.

(f) True or false and explain your answer briefly : If the root of a B tree is full, then an insert

operation definitely will increase the height of the tree.

Solution:

(a) O(log2 L + log2 M logM n)

(b) O(L + M logM n)

(c) True: the new element will go in some leaf and there is room in it

(d) True: whatever leaf should hold the new element must be split

(e) True: even in the rare case that all nodes between the root and the leaf where the new element
goes must be split, there will still be room for the two new children of the root to be pointed to
from the root

(f) False: for example, there is likely room in the leaf where the new element goes, in which case no
splits are needed

8



Name:

8. (6 points) Consider this simple type for representing complex numbers:

class ComplexNumber {

double realPart;

double imaginaryPart;

...

}

If we define arithmetic operations over these numbers, we could use them instead of double since they
are a generalization (we can think of every real number as a complex number).

If we want to put complex numbers in a hashtable, we need a hash function to convert them to integers.
Give a reason why making the hash function for c be (int)(c.realPart * c.imaginaryPart) is likely
to be a very poor choice.

Solution:
The best answer is that it will cause a collision between any two numbers that have a realPart or an
imaginaryPart of 0. In particular, all numbers with no imaginary part will hash to the same integer.
Significant partial credit for multiplication being commutative (so 2 + 3i and 3 + 2i would collide) or
for the fact that the cast to int rounds down, ignoring all the information “after the decimal point.”

9



Name:

9. (13 points)

Consider inserting data with integer keys 20, 18, 11, 47, 36, 19 in that order into a hash table of size
9 where the hashing function is h(key) % 9.

• Show a chaining hash table after doing the insertions:

0 1 2 3 4 5 6 7 8

• Show an open addressing with linear probing hash table after doing the insertions.

0 1 2 3 4 5 6 7 8

• Show an open addressing with quadratic probing hash table after doing the insertions.

0 1 2 3 4 5 6 7 8

Solution:

(a) At index 0: a list holding 36 and 18
At index 1: a list holding 19
At index 2: a list holding 47, 11, and 20

(b) 18 36 20 11 47 19 X X X

(c) 18 36 20 11 X 19 47 X X

10


