CSE332: Data Abstractions

Lecture 9: B Trees

Dan Grossman

Spring 2012
• Problem: A dictionary with so much data most of it is on disk

• Desire: A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size

• Key idea: Increase the branching factor of our tree
M-ary Search Tree

- Build some sort of search tree with branching factor M:
 - Have an array of sorted children (`Node[]`)
 - Choose M to fit snugly into a disk block (1 access for array)

Perfect tree of height h has $(M^{h+1}-1)/(M-1)$ nodes (textbook, page 4)

hops for find: If balanced, then $\log_M n$ instead of $\log_2 n$
 - If $M=256$, that’s an 8x improvement
 - Example: $M = 256$ and $n = 2^{40}$ that’s 5 instead of 40

Runtime of find if balanced: $O(\log_M n \log_2 M)$ (binary search children)
Problems with M-ary search trees

- What should the order property be?
- How would you rebalance (ideally without more disk accesses)?
- Any “useful” data at the internal nodes takes up disk-block space without being used by finds moving past it

So let’s use the branching-factor idea, but for a different kind of balanced tree
 - Not a binary search tree
 - But still logarithmic height for any $M > 2$
B+ Trees (we and the book say “B Trees”)

• Each internal node has room for up to \(M-1 \) keys and \(M \) children
 – No other data: all data at leaves!
• Order property:
 Subtree **between** keys \(x \) and \(y \)
 contains data with keys \(\geq x \) and \(< y \)
• Leaf nodes have up to \(L \) sorted data items

As usual, we wont show the “along for the ride” data in our examples
 – Remember no data at non-leaves
This is a new kind of tree
- We are used to data at internal nodes

find is still an easy root-to-leaf recursive algorithm
- At each internal node, do binary search on the $\leq M-1$ keys
- At the leaf, do binary search on the $\leq L$ data items

To get logarithmic running time, we need a balance condition…
Structure Properties

• Root (special case)
 – If tree has $\leq L$ items, root is a leaf (very strange case)
 – Else has between 2 and M children

• Internal nodes
 – Have between $\lceil M/2 \rceil$ and M children, i.e., at least half full

• Leaf nodes
 – All leaves at the same depth
 – Have between $\lceil L/2 \rceil$ and L data items, i.e., at least half full

(Any $M > 2$ and L will work; picked based on disk-block size)
Example

Suppose $M=4$ (max # children) and $L=5$ (max # at leaf)
- All internal nodes have at least 2 children
- All leaves have at least 3 data items (only showing keys)
- All leaves at same depth
Balanced enough

Not hard to show height h is logarithmic in number of data items n

- Recall $M > 2$ (if $M = 2$, then a list tree is legal – no good!)

- Because all nodes are at least half full (except root may have only 2 children) and all leaves are at the same level, the minimum number of data items n for a height $h > 0$ tree is…

$$n \geq 2 \left\lceil \frac{M}{2} \right\rceil^{h-1} \left\lceil \frac{L}{2} \right\rceil$$

Exponential in height because $\left\lceil \frac{M}{2} \right\rceil > 1$
B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?

• Maximum height of B tree with $M=128$ and $L=64$?
B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

- **Maximum height of AVL tree?**
 - Recall $S(h) = 1 + S(h-1) + S(h-2)$
 - lecture7.xlsx reports: 37

- **Maximum height of B tree with $M=128$ and $L=64$?**
 - Recall $(2 \left\lfloor M/2 \right\rfloor^{h-1}) \left\lfloor L/2 \right\rfloor$
 - lecture9.xlsx reports: 5 (and 4 is more likely)
 - Also not difficult to compute via algebra
Disk Friendliness

Why are B trees so disk friendly?

• Many keys stored in one internal node
 – All brought into memory in one disk access
 – Pick \(M \) wisely. Example: block=1KB, then \(M=128 \)
 – Makes the binary search over \(M-1 \) keys totally worth it
 (insignificant compared to disk access times)

• Internal nodes contain only keys
 – Any \texttt{find} wants only one data item
 – So bring only one leaf of data items into memory
 – Data-item size does not affect value for \(M \)
Maintaining balance

• So this seems like a great data structure (and it is)

• But still need to implement the other dictionary operations
 – insert
 – delete

• As with AVL trees, hard part is maintaining structure properties
 – Example: for insert, there might not be room at the correct leaf
Building a B-Tree (insertions)

The empty B-Tree (1 empty leaf)

\[M = 3 \quad L = 3 \]
Notice 18 is the smallest key in the right child

$M = 3 \quad L = 3$
$M = 3 \quad L = 3$
$M = 3 \quad L = 3$

Spring 2012
Spring 2012

CSE332: Data Abstractions

\[M = 3 \quad L = 3 \]

Insert(12, 40, 45, 38)
Insertion Algorithm, part 1

1. Insert the data in its leaf in sorted order

2. If the leaf now has $L+1$ items, overflow!
 - Split the leaf into two nodes:
 • Original leaf with $\lceil (L+1)/2 \rceil$ smaller items
 • New leaf with $\lfloor (L+1)/2 \rfloor = \lceil L/2 \rceil$ larger items
 - Attach the new child to the parent
 • Adding new key to parent in sorted order

3. If step (2) caused the parent to have $M+1$ children, overflow!
 - ...
3. If an internal node has $M+1$ children
 - Split the node into two nodes
 • Original node with $\lceil (M+1)/2 \rceil$ smaller items
 • New node with $\lfloor (M+1)/2 \rfloor = \lceil M/2 \rceil$ larger items
 - Attach the new child to the parent
 • Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too
 - So repeat step 3 up the tree until a node does not overflow
 - If the root overflows, make a new root with two children
 • This is the only case that increases the tree height
Worst-Case Efficiency of Insert

- Find correct leaf: $O(\log_2 M \log_M n)$
- Insert in leaf: $O(L)$
- Split leaf: $O(L)$
- Split parents up to root: $O(M \log_M n)$

Total: $O(L + M \log_M n)$

But it’s not that bad:
- Splits are uncommon (only required when a node is FULL, M and L can be fairly large, and new leaves/nodes after split are half-empty)
- Disk accesses are the name of the game: $O(\log_M n)$