The AVL Tree Data Structure

Structural properties
1. Binary tree property
2. Balance property:
 - balance of every node is between -1 and 1

Result:
- Worst-case depth is $O(\log n)$

Ordering property
- Same as for BST

AVL Tree Deletion
- Similar to insertion: do the delete and then rebalance
 - Rotations and double rotations
 - Imbalance may propagate upward so rotations at multiple nodes along path to root may be needed (unlike with insert)
- Simple example: a deletion on the right causes the left-left grandchild to be too tall
 - Call this the left-left case, despite deletion on the right
 - $\text{insert}(6) \text{ insert}(3) \text{ insert}(7) \text{ insert}(1) \text{ delete}(7)$

Properties of BST delete
- We first do the normal BST deletion:
 - 0 children: just delete it
 - 1 child: delete it, connect child to parent
 - 2 children: put successor in your place, delete successor leaf
- Which nodes’ heights may have changed:
 - 0 children: path from deleted node to root
 - 1 child: path from deleted node to root
 - 2 children: path from deleted successor leaf to root
- Will rebalance as we return along the “path in question” to the root

Case #1 Left-left due to right deletion
- Start with some subtree where if right child becomes shorter we are unbalanced due to height of left-left grandchild
- A delete in the right child could cause this right-side shortening
 - Same single rotation as when an insert in the left-left grandchild caused imbalance due to X becoming taller
 - But here the “height” at the top decreases, so more rebalancing farther up the tree might still be necessary
Case #2: Left-right due to right deletion

- Same double rotation when an insert in the left-right grandchild caused imbalance due to c becoming taller
- But here the “height” at the top decreases, so more rebalancing farther up the tree might still be necessary

And the other half

- Naturally two more mirror-image cases (not shown here)
 - Deletion in left causes right-right grandchild to be too tall
 - Deletion in left causes right-left grandchild to be too tall
 - (Deletion in left causes both right grandchildren to be too tall, in which case the right-right solution still works)
- And, remember, “lazy deletion” is a lot simpler and might suffice for your needs

Pros and Cons of AVL Trees

Arguments for AVL trees:
1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:
1. Difficult to program & debug
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. Most large searches are done in database-like systems on disk and use other structures (e.g., B-trees, our next data structure)
5. If amortized (later, I promise) logarithmic time is enough, use splay trees (skipping, see text)

Now what?

- Have a data structure for the dictionary ADT that has worst-case $O(\log n)$ behavior
 - One of several interesting/fantastic balanced-tree approaches
- About to learn another balanced-tree approach: B Trees
- First, to motivate why B trees are better for really large dictionaries (say, over 1GB = 2^{30} bytes), need to understand some memory-hierarchy basics
 - Don’t always assume “every memory access has an unimportant $O(1)$ cost”
 - Learn more in CSE351/333/471, focus here on relevance to data structures and efficiency

A typical hierarchy

Every desktop/laptop/server is different but here is a plausible configuration these days

- CPU
- L1 Cache: 128KB = 2^{17} instructions (e.g., addition): 2^{30}/sec
- L2 Cache: 2MB = 2^{21} get data in L1: 2^{29}/sec = 2 insns
- Main memory: 2GB = 2^{31} get data in L2: 2^{30}/sec = 30 insns
- Disk: 1TB = 2^{40} get data in main memory: 2^{32}/sec = 250 insns
- “streamed”: 2^{18}/sec
Morals

It is much faster to do:

<table>
<thead>
<tr>
<th></th>
<th>Than:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 million arithmetic ops</td>
<td>1 disk access</td>
</tr>
<tr>
<td>2500 L2 cache accesses</td>
<td>1 disk access</td>
</tr>
<tr>
<td>400 main memory accesses</td>
<td>1 disk access</td>
</tr>
</tbody>
</table>

Why are computers built this way?

- Physical realities (speed of light, closeness to CPU)
- Cost (price per byte of different technologies)
- Disks get much bigger not much faster
 - Spinning at 7200 RPM accounts for much of the slowness
 - and unlikely to spin faster in the future
- Speedup at higher levels makes lower levels relatively slower

"Fuggedaboutit", usually

The hardware automatically moves data into the caches from main memory for you
 - Replacing items already there
 - So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to open a file or database to access some data)

So most code “just runs” but sometimes it’s worth designing algorithms / data structures with knowledge of memory hierarchy
 - And when you do, you often need to know one more thing…

Block/line size

- Moving data up the memory hierarchy is slow because of latency
 (think distance-to-travel)
 - May as well send more than just the one int/reference asked for
 (think “giving friends a car ride doesn’t slow you down”)
 - Sends nearby memory because:
 - It is easy
 - Likely to be used soon (think fields/arrays)

 - Amount of data moved from disk into memory called the “block” size
 or the “page” size
 - Not under program control

 - Amount of data moved from memory into cache called the “line” size
 - Not under program control

Principle of Locality

BSTs?

- Looking things up in balanced binary search trees is \(O(\log n) \)
 so even for \(n = 2^{39} \) (512GB) we need not worry about minutes or hours

 - Still, number of disk accesses matters
 - AVL tree could have height of 55 (see lecture7.xlsx)
 - So each \texttt{find} could take about 0.5 seconds or about 100
 finds a minute
 - Most of the nodes will be on disk: the tree is shallow, but it is
 still many gigabytes big so the \texttt{tree} cannot fit in memory
 - Even if memory holds the first 25 nodes on our path, we
 still need 30 disk accesses

Note about numbers; moral

- All the numbers in this lecture are “ballpark” “back of the envelope” figures

 - Even if they are off by, say, a factor of 5, the moral is the same:
 If your data structure is mostly on disk, you want to minimize
 disk accesses

 - A better data structure in this setting would exploit the block size
 and relatively fast memory access to avoid disk accesses…