CSE332: Data Abstractions

Lecture 8: AVL Delete; Memory Hierarchy

Dan Grossman
Spring 2012
The AVL Tree Data Structure

Structural properties

1. Binary tree property
2. Balance property: balance of every node is between -1 and 1

Result:
- **Worst-case** depth is $O(\log n)$

Ordering property
- Same as for BST
AVL Tree Deletion

- Similar to insertion: do the delete and then rebalance
 - Rotations and double rotations
 - Imbalance may propagate upward so rotations at multiple nodes along path to root may be needed (unlike with insert)

- Simple example: a deletion on the right causes the left-left grandchild to be too tall
 - Call this the left-left case, despite deletion on the right
 - insert(6) insert(3) insert(7) insert(1) delete(7)
Properties of BST delete

We first do the normal BST deletion:
 – 0 children: just delete it
 – 1 child: delete it, connect child to parent
 – 2 children: put successor in your place, delete successor leaf

Which nodes’ heights may have changed:
 – 0 children: path from deleted node to root
 – 1 child: path from deleted node to root
 – 2 children: path from deleted successor leaf to root

Will rebalance as we return along the “path in question” to the root
Case #1 Left-left due to right deletion

- Start with some subtree where if right child becomes shorter we are unbalanced due to height of left-left grandchild

A delete in the right child could cause this right-side shortening
Case #1: Left-left due to right deletion

- Same single rotation as when an insert in the left-left grandchild caused imbalance due to X becoming taller
- But here the “height” at the top decreases, so more rebalancing farther up the tree might still be necessary
Case #2: Left-right due to right deletion

- Same double rotation when an insert in the left-right grandchild caused imbalance due to c becoming taller
- But here the “height” at the top decreases, so more rebalancing farther up the tree might still be necessary
No third right-deletion case needed

So far we have handled these two cases:
left-left

```
+----+  +----+
| a  |  | a  |
+----+  +----+
    |    |    |
  +----+  +----+
  | b  |  | b  |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h+1 |  | h+1 |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h  |  | h  |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h+2 |  | h+2 |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h+3 |  | h+3 |
  +----+  +----+
      |    |    |
  +----+  +----+
  | Y   |  | U   |
  +----+  +----+
      |    |    |
  +----+  +----+
  | X   |  | V   |
  +----+  +----+
      |    |    |
  +----+  +----+
  | X   |  | X   |
  +----+  +----+
      |    |    |
```

left-right

```
+----+  +----+
| a  |  | a  |
+----+  +----+
    |    |    |
  +----+  +----+
  | b  |  | b  |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h+1 |  | h+1 |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h  |  | h  |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h+2 |  | h+2 |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h+3 |  | h+3 |
  +----+  +----+
      |    |    |
  +----+  +----+
  | Z   |  | Z   |
  +----+  +----+
      |    |    |
  +----+  +----+
  | X   |  | X   |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h   |  | h   |
  +----+  +----+
      |    |    |
  +----+  +----+
  | h+1 |  | h+1 |
  +----+  +----+
      |    |    |
  +----+  +----+
  | V   |  | V   |
  +----+  +----+
      |    |    |
```

But what if the two left grandchildren are now both too tall (h+1)?
• Then it turns out left-left solution still works
• The children of the “new top node” will have heights differing by 1 instead of 0, but that’s fine
And the other half

• Naturally two more mirror-image cases (not shown here)
 – Deletion in left causes right-right grandchild to be too tall
 – Deletion in left causes right-left grandchild to be too tall
 – (Deletion in left causes both right grandchildren to be too tall, in which case the right-right solution still works)

• And, remember, “lazy deletion” is a lot simpler and might suffice for your needs
Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. Most large searches are done in database-like systems on disk and use other structures (e.g., B-trees, our next data structure)
5. If amortized (later, I promise) logarithmic time is enough, use splay trees (skipping, see text)
Now what?

• Have a data structure for the dictionary ADT that has worst-case\(O(\log n)\) behavior
 – One of several interesting/fantastic balanced-tree approaches

• About to learn another balanced-tree approach: B Trees

• First, to motivate why B trees are better for really large dictionaries (say, over 1GB = \(2^{30}\) bytes), need to understand some memory-hierarchy basics
 – Don’t always assume “every memory access has an unimportant \(O(1)\) cost”
 – Learn more in CSE351/333/471, focus here on relevance to data structures and efficiency
A typical hierarchy

Every desktop/laptop/server is different but here is a plausible configuration these days

- CPU
- L1 Cache: 128KB = 2^{17}
 - get data in L1: 2^{29}/sec = 2 insns
- L2 Cache: 2MB = 2^{21}
 - get data in L2: 2^{25}/sec = 30 insns
- Main memory: 2GB = 2^{31}
 - get data in main memory: 2^{22}/sec = 250 insns
- Disk: 1TB = 2^{40}
 - get data from “new place” on disk: 2^{7}/sec = 8,000,000 insns
 - “streamed”: 2^{18}/sec

instructions (e.g., addition): 2^{30}/sec
Morals

It is much faster to do: Than:
5 million arithmetic ops 1 disk access
2500 L2 cache accesses 1 disk access
400 main memory accesses 1 disk access

Why are computers built this way?

– Physical realities (speed of light, closeness to CPU)
– Cost (price per byte of different technologies)
– Disks get much bigger not much faster
 • Spinning at 7200 RPM accounts for much of the slowness and unlikely to spin faster in the future
– Speedup at higher levels makes lower levels relatively slower
“Fuggedaboutit”, usually

The hardware automatically moves data into the caches from main memory for you
 – Replacing items already there
 – So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to open a file or database to access some data)

So most code “just runs” but sometimes it’s worth designing algorithms / data structures with knowledge of memory hierarchy
 – And when you do, you often need to know one more thing…
Block/line size

- Moving data up the memory hierarchy is slow because of *latency* (think distance-to-travel)
 - May as well send more than just the one int/reference asked for (think “giving friends a car ride doesn’t slow you down”)
 - Sends nearby memory because:
 - It is easy
 - Likely to be used soon (think fields/arrays)

- Amount of data moved from disk into memory called the “block” size or the “page” size
 - Not under program control

- Amount of data moved from memory into cache called the “line” size
 - Not under program control
Connection to data structures

• An array benefits more than a linked list from block moves
 – Language (e.g., Java) implementation can put the list nodes anywhere, whereas array is typically contiguous memory

• Suppose you have a queue to process with 2^{23} items of 2^{7} bytes each on disk and the block size is 2^{10} bytes
 – An array implementation needs 2^{20} disk accesses
 – If “perfectly streamed”, > 4 seconds
 – If “random places on disk”, 8000 seconds (> 2 hours)
 – A list implementation in the worst case needs 2^{23} “random” disk accesses (> 16 hours) – probably not that bad

• Note: “array” doesn’t mean “good”
 – Binary heaps “make big jumps” to percolate (different block)
BSTs?

- Looking things up in balanced binary search trees is $O(\log n)$, so even for $n = 2^{39}$ (512GB) we need not worry about minutes or hours

- Still, number of disk accesses matters
 - AVL tree could have height of 55 (see lecture7.xlsx)
 - So each `find` could take about 0.5 seconds or about 100 finds a minute
 - Most of the nodes will be on disk: the tree is shallow, but it is still many gigabytes big so the tree cannot fit in memory
 - Even if memory holds the first 25 nodes on our path, we still need 30 disk accesses
Note about numbers; moral

• All the numbers in this lecture are “ballpark” “back of the envelope” figures

• Even if they are off by, say, a factor of 5, the moral is the same: If your data structure is mostly on disk, you want to minimize disk accesses

• A better data structure in this setting would exploit the block size and relatively fast memory access to avoid disk accesses…