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Where we are 

Studying the absolutely essential ADTs of computer science and  
classic data structures for implementing them 
 

ADTs so far: 
 

1. Stack:         push, pop, isEmpty, … 
2. Queue:         enqueue, dequeue, isEmpty, … 
3. Priority queue:   insert, deleteMin, … 

 

Next: 
 

4. Dictionary (a.k.a. Map): associate keys with values 
– Probably the most common, way more than priority queue 
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The Dictionary (a.k.a. Map) ADT 

• Data: 
– set of (key, value) pairs 
– keys must be comparable 

 
• Operations: 

– insert(key,value) 
– find(key) 
– delete(key) 
– … 

• djg 
Dan 

 Grossman 
 … 

 
• trobison 

Tyler 
Robison 

 … 
 

• snwang 
Stanley 
Wang 
… 
 

insert(djg, ….) 

find(trobison) 
Tyler, Robison, … 

Will tend to emphasize the keys; 
don’t forget about the stored values 
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Comparison: The Set ADT 

The Set ADT is like a Dictionary without any values 
– A key is present or not (no repeats) 

 
For find, insert, delete, there is little difference 

– In dictionary, values are “just along for the ride” 
– So same data-structure ideas work for dictionaries and sets 

 
But if your Set ADT has other important operations this may not hold 

– union, intersection, is_subset 
– Notice these are binary operators on sets 
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Dictionary data structures 

Will spend the next several lectures implementing dictionaries with 
three different data structures 

 

1. AVL trees 
– Binary search trees with guaranteed balancing 

 

2. B-Trees 
– Also always balanced, but different and shallower 
– B!=Binary; B-Trees generally have large branching factor 

 

3. Hashtables 
– Not tree-like at all 

 

Skipping: Other balanced trees (e.g., red-black, splay) 
 

But first some applications and less efficient implementations… 
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A Modest Few Uses 

Any time you want to store information according to some key and 
be able to retrieve it efficiently 
– Lots of programs do that! 

 
• Networks:   router tables 
• Operating systems:  page tables 
• Compilers:   symbol tables 
• Databases:   dictionaries with other nice properties 
• Search:  inverted indexes, phone directories, … 
• Biology:  genome maps 
• … 
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Simple implementations 
For dictionary with n key/value pairs 
 

      insert   find    delete 
• Unsorted linked-list 

 
• Unsorted array  

 
• Sorted linked list 

 
• Sorted array 

 
We’ll see a Binary Search Tree (BST) probably does better, but 

not in the worst case unless we keep it balanced 
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Simple implementations 
For dictionary with n key/value pairs 
 

      insert   find    delete 
• Unsorted linked-list           O(1)          O(n)            O(n) 

 
• Unsorted array                  O(1)          O(n)            O(n) 

 
• Sorted linked list                O(n)          O(n)            O(n) 

 
• Sorted array                      O(n)          O(log n)     O(n) 
 
We’ll see a Binary Search Tree (BST) probably does better, but 

not in the worst case unless we keep it balanced 
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Lazy Deletion 

A general technique for making delete as fast as find: 
– Instead of actually removing the item just mark it deleted 

 

Plusses: 
– Simpler 
– Can do removals later in batches 
– If re-added soon thereafter, just unmark the deletion 

 

Minuses: 
– Extra space for the “is-it-deleted” flag 
– Data structure full of deleted nodes wastes space 
–  find O(log m) time where m is data-structure size (okay) 
– May complicate other operations 
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Some tree terms (mostly review) 

• There are many kinds of trees 
– Every binary tree is a tree 
– Every list is kind of a tree (think of “next” as the one child) 

 
• There are many kinds of binary trees 

– Every binary min heap is a binary tree 
– Every binary search tree is a binary tree 

 
• A tree can be balanced or not 

– A balanced tree with n nodes has a height of O(log n)  
– Different tree data structures have different “balance 

conditions” to achieve this 
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Binary Trees 

• Binary tree is empty or 
– A root (with data) 
– A left subtree (may be empty)  
– A right subtree (may be empty)  

 
• Representation: 

A 

B 

D E 

C 

F 

H G 

J I 

Data 
right  

pointer 
left 

pointer 

• For a dictionary, data will include a 
key and a value 
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Binary Trees: Some Numbers 
Recall: height of a tree = longest path from root to leaf (count edges) 
 
For binary tree of height h: 

– max # of leaves:  
 

– max # of nodes: 
 

– min # of leaves: 
 

– min # of nodes: 
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Binary Trees: Some Numbers 
Recall: height of a tree = longest path from root to leaf (count edges) 
 
For binary tree of height h: 

– max # of leaves:  
 

– max # of nodes: 
 

– min # of leaves: 
 

– min # of nodes: 
 

2h 

2(h + 1) - 1 

1 

h + 1 

For n nodes, we cannot do better than O(log n) height,  
and we want to avoid O(n) height 
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Calculating height 

What is the height of a tree with root  root? 
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int treeHeight(Node root) { 
 
   ??? 
 
 
} 

Calculating height 
What is the height of a tree with root  root? 
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int treeHeight(Node root) { 
  if(root == null) 
    return -1; 
  return 1 + max(treeHeight(root.left), 
                 treeHeight(root.right)); 
} 

Running time for tree with n nodes: O(n) – single pass over tree 
 

Note: non-recursive is painful – need your own stack of pending 
nodes; much easier to use recursion’s call stack 

Tree Traversals 

A traversal is an order for visiting all the nodes of a tree 
 
• Pre-order: root, left subtree, right subtree 

 
 

• In-order: left subtree, root, right subtree 
 
 

• Post-order: left subtree, right subtree, root 

+ 

* 

2 4 

5 

(an expression tree) 
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Tree Traversals 

A traversal is an order for visiting all the nodes of a tree 
 
• Pre-order: root, left subtree, right subtree 
 + * 2 4 5 

 

• In-order: left subtree, root, right subtree 
 2 * 4 + 5 

 

• Post-order: left subtree, right subtree, root 
 2 4 * 5 + 

+ 

* 

2 4 

5 

(an expression tree) 
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More on  traversals 

void inOrderTraversal(Node t){ 
  if(t != null) { 
    inOrderTraversal(t.left); 
    process(t.element); 
    inOrderTraversal(t.right); 
  } 
} 

Sometimes order doesn’t matter 
• Example: sum all elements 

Sometimes order matters 
• Example: print tree with parent above  
 indented children (pre-order) 
• Example: evaluate an expression tree 

(post-order) 

A 
    B 
        D 
        E 
    C 
    F 
        G 
          

A 

B 

D E 

C 

F G 
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Binary Search Tree 

4 

12 10 6 2 

11 5 

8 

14 

13 

7 9 

• Structure property (“binary”) 
– Each node has � 2 children 
– Result: keeps operations simple 

 

• Order property 
– All keys in left subtree smaller 

than node’s key 
– All keys in right subtree larger 

than node’s key 
– Result: easy to find any given key 
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Are these BSTs? 

3 

11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 

7 

15 
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Are these BSTs? 

3 

11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 

7 
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Find in BST, Recursive 

20 9 2 

15 5 

12 

30 7 17 10 

Data find(Key key, Node root){ 
 if(root == null) 
   return null; 
 if(key < root.key) 
   return find(key,root.left); 
 if(key > root.key) 
   return find(key,root.right); 
 return root.data; 
} 
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Find in BST, Iterative 

20 9 2 

15 5 

12 

30 7 17 10 

Data find(Key key, Node root){ 
 while(root != null  
       && root.key != key) { 
  if(key < root.key) 
    root = root.left; 
  else(key > root.key) 
    root = root.right; 
 } 
 if(root == null) 
    return null; 
 return root.data; 
} 
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Other “Finding” Operations 

 
• Find minimum node 

– “the liberal algorithm” 
• Find maximum node 

– “the conservative algorithm” 
 

• Find predecessor of a non-leaf 
• Find successor of a non-leaf 
• Find predecessor of a leaf 
• Find successor of a leaf 

20 9 2 

15 5 

12 

30 7 17 10 
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Insert in BST 

20 9 2 

15 5 

12 

30 7 17 

insert(13) 
insert(8) 
insert(31) 

(New) insertions happen 
only at leaves – easy! 10 

8 31 

13 
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Deletion in BST 

20 9 2 

15 5 

12 

30 7 17 

Why might deletion be harder than insertion? 

10 
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Deletion 
• Removing an item disrupts the tree structure 

 
• Basic idea: find the node to be removed, then  

“fix” the tree so that it is still a binary search tree 
 

• Three cases: 
– Node has no children (leaf) 
– Node has one child 
– Node has two children 

Spring 2012 27 CSE332: Data Abstractions 

Deletion – The Leaf Case 

20 9 2 

15 5 

12 

30 7 17 

delete(17) 

10 
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Deletion – The One Child Case 

20 9 2 

15 5 

12 

30 7 10 
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delete(15) 

Deletion – The Two Child Case 

30 9 2 

20 5 

12 

7 

What can we replace 5 with? 
 
 

10 
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delete(5) 



Deletion – The Two Child Case 

Idea: Replace the deleted node with a value guaranteed to be 
between the two child subtrees 

 
Options: 
• successor    from right subtree: findMin(node.right) 
• predecessor   from left subtree:   findMax(node.left) 

– These are the easy cases of predecessor/successor 
 
Now delete the original node containing successor or predecessor 
• Leaf or one child case – easy cases of delete! 
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BuildTree for BST 
• We had buildHeap, so let’s consider buildTree 

 
• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 

 
– If inserted in given order,  

what is the tree?   
 

– What big-O runtime for  
this kind of sorted input? 
 

– Is inserting in the reverse order  
 any better? 
 

 

1 

2 

3 

O(n2) 
Not a happy place 
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BuildTree for BST 
• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 

 

• What we if could somehow re-arrange them 
– median first, then left median, right median, etc. 
– 5, 3, 7, 2, 1, 4, 8, 6, 9  

 
– What tree does that give us?  

 
– What big-O runtime? 

 
 8 4 2 

7 3 

5 

9 

6 

1 

O(n log n), definitely better 
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Unbalanced BST 

• Balancing a tree at build time is insufficient, as sequences of 
operations can eventually transform that carefully balanced tree 
into the dreaded list 
 

• At that point, everything is 
O(n) and nobody is happy 
– find 
– insert 
– delete 

1 

2 

3 
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Balanced BST 

Observation 
• BST: the shallower the better! 
• For a BST with n nodes inserted in arbitrary order 

– Average height is O(log n) – see text for proof 
– Worst case height is O(n) 

• Simple cases, such as inserting in key order, lead to 
 the worst-case scenario 

 
Solution:  Require a Balance Condition that 
1. Ensures depth is always O(log n)     – strong enough! 
2. Is efficient to maintain              – not too strong! 
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Potential Balance Conditions 
1. Left and right subtrees of the root 

have equal number of nodes 
 
 
 

2. Left and right subtrees of the root 
have equal height 

Too weak! 
Height mismatch example: 

Too weak! 
Double chain example: 
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Potential Balance Conditions 
3. Left and right subtrees of every node 

have equal number of nodes 
 
 
 

4. Left and right subtrees of every node 
have equal height 

Too strong! 
Only perfect trees (2n – 1 nodes) 

Too strong! 
Only perfect trees (2n – 1 nodes) 
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The AVL Balance Condition 
Left and right subtrees of every node 
have heights differing by at most 1 
 
Definition:  balance(node) = height(node.left) – height(node.right) 
 
AVL property:   for every node x,   –1 �� balance(x) � 1    

 
• Ensures small depth 

– Will prove this by showing that an AVL tree of height 
h must have a number of nodes exponential in h 
 

• Efficient to maintain 
– Using single and double rotations 
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