
CSE332: Data Abstractions

Lecture 6: Dictionaries; Binary Search Trees

Dan Grossman
Spring 2012

Where we are

Studying the absolutely essential ADTs of computer science and
classic data structures for implementing them

ADTs so far:

1. Stack: push, pop, isEmpty, …
2. Queue: enqueue, dequeue, isEmpty, …
3. Priority queue: insert, deleteMin, …

Next:

4. Dictionary (a.k.a. Map): associate keys with values
– Probably the most common, way more than priority queue

Spring 2012 2 CSE332: Data Abstractions

The Dictionary (a.k.a. Map) ADT

• Data:
– set of (key, value) pairs
– keys must be comparable

• Operations:

– insert(key,value)
– find(key)
– delete(key)
– …

• djg
Dan

 Grossman
 …

• trobison

Tyler
Robison

 …

• snwang
Stanley
Wang
…

insert(djg, ….)

find(trobison)
Tyler, Robison, …

Will tend to emphasize the keys;
don’t forget about the stored values

Spring 2012 3 CSE332: Data Abstractions

Comparison: The Set ADT

The Set ADT is like a Dictionary without any values
– A key is present or not (no repeats)

For find, insert, delete, there is little difference

– In dictionary, values are “just along for the ride”
– So same data-structure ideas work for dictionaries and sets

But if your Set ADT has other important operations this may not hold

– union, intersection, is_subset
– Notice these are binary operators on sets

Spring 2012 4 CSE332: Data Abstractions

Dictionary data structures

Will spend the next several lectures implementing dictionaries with
three different data structures

1. AVL trees
– Binary search trees with guaranteed balancing

2. B-Trees
– Also always balanced, but different and shallower
– B!=Binary; B-Trees generally have large branching factor

3. Hashtables
– Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

But first some applications and less efficient implementations…
Spring 2012 5 CSE332: Data Abstractions

A Modest Few Uses

Any time you want to store information according to some key and
be able to retrieve it efficiently
– Lots of programs do that!

• Networks: router tables
• Operating systems: page tables
• Compilers: symbol tables
• Databases: dictionaries with other nice properties
• Search: inverted indexes, phone directories, …
• Biology: genome maps
• …

Spring 2012 6 CSE332: Data Abstractions

Simple implementations
For dictionary with n key/value pairs

 insert find delete
• Unsorted linked-list

• Unsorted array

• Sorted linked list

• Sorted array

We’ll see a Binary Search Tree (BST) probably does better, but

not in the worst case unless we keep it balanced

 Spring 2012 7 CSE332: Data Abstractions

Simple implementations
For dictionary with n key/value pairs

 insert find delete
• Unsorted linked-list O(1) O(n) O(n)

• Unsorted array O(1) O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

We’ll see a Binary Search Tree (BST) probably does better, but

not in the worst case unless we keep it balanced

 Spring 2012 8 CSE332: Data Abstractions

Lazy Deletion

A general technique for making delete as fast as find:
– Instead of actually removing the item just mark it deleted

Plusses:
– Simpler
– Can do removals later in batches
– If re-added soon thereafter, just unmark the deletion

Minuses:
– Extra space for the “is-it-deleted” flag
– Data structure full of deleted nodes wastes space
– find O(log m) time where m is data-structure size (okay)
– May complicate other operations

Spring 2012 9 CSE332: Data Abstractions

10 12 24 30 41 42 44 45 50
� � � � � � � � �

Some tree terms (mostly review)

• There are many kinds of trees
– Every binary tree is a tree
– Every list is kind of a tree (think of “next” as the one child)

• There are many kinds of binary trees

– Every binary min heap is a binary tree
– Every binary search tree is a binary tree

• A tree can be balanced or not

– A balanced tree with n nodes has a height of O(log n)
– Different tree data structures have different “balance

conditions” to achieve this

Spring 2012 10 CSE332: Data Abstractions

Binary Trees

• Binary tree is empty or
– A root (with data)
– A left subtree (may be empty)
– A right subtree (may be empty)

• Representation:

A

B

D E

C

F

H G

J I

Data
right

pointer
left

pointer

• For a dictionary, data will include a
key and a value

Spring 2012 11 CSE332: Data Abstractions 12

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

Spring 2012 CSE332: Data Abstractions

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

2h

2(h + 1) - 1

1

h + 1

For n nodes, we cannot do better than O(log n) height,
and we want to avoid O(n) height

Spring 2012 13 CSE332: Data Abstractions

Calculating height

What is the height of a tree with root root?

Spring 2012 14 CSE332: Data Abstractions

int treeHeight(Node root) {

 ???

}

Calculating height
What is the height of a tree with root root?

Spring 2012 15 CSE332: Data Abstractions

int treeHeight(Node root) {
 if(root == null)
 return -1;
 return 1 + max(treeHeight(root.left),
 treeHeight(root.right));
}

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending
nodes; much easier to use recursion’s call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree

• In-order: left subtree, root, right subtree

• Post-order: left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

Spring 2012 16 CSE332: Data Abstractions

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree
 + * 2 4 5

• In-order: left subtree, root, right subtree
 2 * 4 + 5

• Post-order: left subtree, right subtree, root
 2 4 * 5 +

+

*

2 4

5

(an expression tree)

Spring 2012 17 CSE332: Data Abstractions

More on traversals

void inOrderTraversal(Node t){
 if(t != null) {
 inOrderTraversal(t.left);
 process(t.element);
 inOrderTraversal(t.right);
 }
}

Sometimes order doesn’t matter
• Example: sum all elements

Sometimes order matters
• Example: print tree with parent above
 indented children (pre-order)
• Example: evaluate an expression tree

(post-order)

A
 B
 D
 E
 C
 F
 G

A

B

D E

C

F G

Spring 2012 18 CSE332: Data Abstractions

Binary Search Tree

4

12 10 6 2

11 5

8

14

13

7 9

• Structure property (“binary”)
– Each node has � 2 children
– Result: keeps operations simple

• Order property
– All keys in left subtree smaller

than node’s key
– All keys in right subtree larger

than node’s key
– Result: easy to find any given key

Spring 2012 19 CSE332: Data Abstractions

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

Spring 2012 20 CSE332: Data Abstractions

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

Spring 2012 21 CSE332: Data Abstractions

Find in BST, Recursive

20 9 2

15 5

12

30 7 17 10

Data find(Key key, Node root){
 if(root == null)
 return null;
 if(key < root.key)
 return find(key,root.left);
 if(key > root.key)
 return find(key,root.right);
 return root.data;
}

Spring 2012 22 CSE332: Data Abstractions

Find in BST, Iterative

20 9 2

15 5

12

30 7 17 10

Data find(Key key, Node root){
 while(root != null
 && root.key != key) {
 if(key < root.key)
 root = root.left;
 else(key > root.key)
 root = root.right;
 }
 if(root == null)
 return null;
 return root.data;
}

Spring 2012 23 CSE332: Data Abstractions

Other “Finding” Operations

• Find minimum node

– “the liberal algorithm”
• Find maximum node

– “the conservative algorithm”

• Find predecessor of a non-leaf
• Find successor of a non-leaf
• Find predecessor of a leaf
• Find successor of a leaf

20 9 2

15 5

12

30 7 17 10

Spring 2012 24 CSE332: Data Abstractions

Insert in BST

20 9 2

15 5

12

30 7 17

insert(13)
insert(8)
insert(31)

(New) insertions happen
only at leaves – easy! 10

8 31

13

Spring 2012 25 CSE332: Data Abstractions

Deletion in BST

20 9 2

15 5

12

30 7 17

Why might deletion be harder than insertion?

10

Spring 2012 26 CSE332: Data Abstractions

Deletion
• Removing an item disrupts the tree structure

• Basic idea: find the node to be removed, then

“fix” the tree so that it is still a binary search tree

• Three cases:
– Node has no children (leaf)
– Node has one child
– Node has two children

Spring 2012 27 CSE332: Data Abstractions

Deletion – The Leaf Case

20 9 2

15 5

12

30 7 17

delete(17)

10

Spring 2012 28 CSE332: Data Abstractions

Deletion – The One Child Case

20 9 2

15 5

12

30 7 10

Spring 2012 29 CSE332: Data Abstractions

delete(15)

Deletion – The Two Child Case

30 9 2

20 5

12

7

What can we replace 5 with?

10

Spring 2012 30 CSE332: Data Abstractions

delete(5)

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be
between the two child subtrees

Options:
• successor from right subtree: findMin(node.right)
• predecessor from left subtree: findMax(node.left)

– These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
• Leaf or one child case – easy cases of delete!

Spring 2012 31 CSE332: Data Abstractions

BuildTree for BST
• We had buildHeap, so let’s consider buildTree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

– If inserted in given order,

what is the tree?

– What big-O runtime for
this kind of sorted input?

– Is inserting in the reverse order
 any better?

1

2

3

O(n2)
Not a happy place

Spring 2012 32 CSE332: Data Abstractions

BuildTree for BST
• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

• What we if could somehow re-arrange them
– median first, then left median, right median, etc.
– 5, 3, 7, 2, 1, 4, 8, 6, 9

– What tree does that give us?

– What big-O runtime?

 8 4 2

7 3

5

9

6

1

O(n log n), definitely better

Spring 2012 33 CSE332: Data Abstractions

Unbalanced BST

• Balancing a tree at build time is insufficient, as sequences of
operations can eventually transform that carefully balanced tree
into the dreaded list

• At that point, everything is
O(n) and nobody is happy
– find
– insert
– delete

1

2

3

Spring 2012 34 CSE332: Data Abstractions

Balanced BST

Observation
• BST: the shallower the better!
• For a BST with n nodes inserted in arbitrary order

– Average height is O(log n) – see text for proof
– Worst case height is O(n)

• Simple cases, such as inserting in key order, lead to
 the worst-case scenario

Solution: Require a Balance Condition that
1. Ensures depth is always O(log n) – strong enough!
2. Is efficient to maintain – not too strong!

Spring 2012 35 CSE332: Data Abstractions

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

Too weak!
Height mismatch example:

Too weak!
Double chain example:

Spring 2012 36 CSE332: Data Abstractions

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2n – 1 nodes)

Too strong!
Only perfect trees (2n – 1 nodes)

Spring 2012 37 CSE332: Data Abstractions 38

The AVL Balance Condition
Left and right subtrees of every node
have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, –1 �� balance(x) � 1

• Ensures small depth

– Will prove this by showing that an AVL tree of height
h must have a number of nodes exponential in h

• Efficient to maintain
– Using single and double rotations

Spring 2012 CSE332: Data Abstractions

