Review

• Priority Queue ADT: \textit{insert} comparable object, \textit{deleteMin}
• Binary heap data structure: Complete binary tree where each node has priority value greater than its parent
• $O(\text{height-of-tree})=O(\log n)$ insert and deleteMin operations
 - \textit{insert}: put at new last position in tree and percolate-up
 - \textit{deleteMin}: remove root, put last element at root and percolate-down
• But: tracking the “last position” is painful and we can do better

Insertion and deletion can be done in logarithmic time.

Array Representation of Binary Trees

From node i:
- left child: $i \times 2$
- right child: $i \times 2 + 1$
- parent: $i / 2$

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Judging the array implementation

Plusses:
- Non-data space: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- For reasons you learn in CSE351, multiplying and dividing by 2 is very fast
- Last used position is just index size

Minuses:
- Same might-by-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”

Pseudocode: insert

```c
void insert(int val) {
    if(size==arr.length-1)
        resize();
    size++;
    i=percolateUp(size, val);
    arr[i] = val;
}
```

Pseudocode: percolateUp

```c
int percolateUp(int hole, int val) {
    while(hole > 1 && val < arr[hole/2]) {
        arr[hole] = arr[hole/2];
        hole = hole / 2;
    }
    return hole;
}
```

This pseudocode uses ints. In real use, you will have data nodes with priorities.
Pseudocode: deleteMin

This pseudocode uses ints. In real use, you will have data nodes with priorities.

```c
int deleteMin() {
    if(isEmpty()) throw ...
    ans = arr[1];
    hole = percolateDown
        (1,arr[size]);
    arr[hole] = arr[size];
    size--;
    return ans;
}
```

```c
int percolateDown(int hole, int val) {
    while(2*hole <= size) {
        left  = 2*hole;
        right = left + 1;
        if(arr[left] < arr[right]
            || right > size)
            target = left;
        else
            target = right;
        if(arr[target] < val) {
            arr[hole] = arr[target];
            hole = target;
        } else
            break;
    }
    return hole;
}
```

Example

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

```
0 1 2 3 4 5 6 7
```

Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up

- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
 - Change priority and percolate down

- **remove**: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - decreaseKey with p = ∞, then deleteMin

Running time for all these operations?

Build Heap

- Suppose you have n items to put in a new (empty) priority queue
 - Call this operation `buildHeap`

- n inserts works
 - Only choice if ADT doesn’t provide `buildHeap` explicitly
 - O(n log n)

- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an O(n) algorithm called Floyd’s Method
 - Common issue in ADT design: how many specialized operations

Floyd’s Method

1. Use n items to make any complete tree you want
 - That is, put them in array indices 1,...,n

2. Treat it as a heap and fix the heap-order property
 - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```c
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Example

```
5 12
3 10
```

- In tree form for readability
 - Purple for node not less than descendants
 - heap-order problem
 - Notice no leaves are purple
 - Check/fix each non-leaf bottom-up (6 steps here)
Step 1
• Happens to already be less than children (er, child)

Step 2
• Percolate down (notice that moves 1 up)

Step 3
• Another nothing-to-do step

Step 4
• Percolate down as necessary (steps 4a and 4b)

Step 5

Step 6
But is it right?

- “Seems to work”
 - Let’s prove it restores the heap property (correctness)
 - Then let’s prove its running time (efficiency)

```java
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val  = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Correctness

Loop Invariant: For all j>i, arr[j] is less than its children
- True initially: If j > size/2, then j is a leaf
 - Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants
So after the loop finishes, all nodes are less than their children

```java
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val  = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Efficiency

Easy argument: buildHeap is $O(n \log n)$ where n is size
- size/2 loop iterations
- Each iteration does one percolateDown, each is $O(\log n)$

This is correct, but there is a more precise (“tighter”) analysis of the algorithm...

```java
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val  = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Better argument: buildHeap is $O(n)$ where n is size
- size/2 total loop iterations: $O(n)$
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- $((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2$ (page 4 of Weiss)
 - So at most 2 (size/2) total percolate steps: $O(n)$

Lessons from buildHeap

- Without buildHeap, our ADT already let clients implement their own in $O(n \log n)$ worst case
 - Worst case is inserting lower priority values later
- By providing a specialized operation internal to the data structure (with access to the internal data), we can do $O(n)$ worst case
 - Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
 - Correctness:
 - Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was $O(n \log n)$
 - Tighter analysis shows same algorithm is $O(n)$

What we’re skipping (see text if curious)

- d-heaps: have d children instead of 2
 - Makes heaps shallower, useful for heaps too big for memory
 - The same issue arises for balanced binary search trees and we will study “B-Trees”
- merge: given two priority queues, make one priority queue
 - How might you merge binary heaps:
 - If one heap is much smaller than the other?
 - If both are about the same size?
 - Different pointer-based data structures for priority queues support logarithmic time merge operation (impossible with binary heaps)
 - Leftist heaps, skew heaps, binomial queues