A new ADT: Priority Queue

- Textbook Chapter 6
 - Will go back to binary search trees and hash tables
 - Nice to see a new and surprising data structure first
- A priority queue holds compare-able data
 - Unlike stacks and queues need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Many data structures require this: dictionaries, sorting
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the priority and the data

Priorities

- Each item has a “priority”
 - The lesser item is the one with the greater priority
 - So “priority 1” is more important than “priority 4”
 - (Just a convention)
- Operations:
 - insert
 - deleteMin
 - isEmpty
 - Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily

Example

insert x1 with priority 5
insert x2 with priority 3
insert x3 with priority 4
a = deleteMin // x2
b = deleteMin // x3
insert x4 with priority 2
c = deleteMin // x4
d = deleteMin // x1

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

Applications

Like all good ADTs, the priority queue arises often
 - Sometimes blatant, sometimes less obvious
 - Run multiple programs in the operating system
 - “critical” before “interactive” before “compute-intensive”
 - Maybe let users set priority level
 - Treat hospital patients in order of severity (or triage)
 - Select print jobs in order of decreasing length?
 - Forward network packets in order of urgency
 - Select most frequent symbols for data compression (cf. CSE143)
 - Sort (first insert all, then repeatedly deleteMin)
 - Much like Project 1 uses a stack to implement reverse

More applications

- “Greedy” algorithms
 - Will see an example when we study graphs in a few weeks
- Discrete event simulation (system simulation, virtual worlds, …)
 - Each event e happens at some time t, updating system state and generating new events e1, …, en at times t+t1, …, t+tn
 - Naive approach: advance “clock” by 1 unit at a time and process any events that happen then
 - Better:
 - Pending events in a priority queue (priority = event time)
 - Repeatedly: deleteMin and then insert new events
 - Effectively “set clock ahead to next event”
Finding a good data structure

• Will show an efficient, non-obvious data structure
 – But first let’s analyze some “obvious” ideas for \(n \) data items
 – All times worst-case; assume arrays “have room”

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unsorted linked list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorted circular array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sorted linked list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search tree</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Need a good data structure!

• Will show an efficient, non-obvious data structure for this ADT
 – But first let’s analyze some “obvious” ideas for \(n \) data items
 – All times worst-case; assume arrays “have room”

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>(O(1))</td>
<td>search (O(n))</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>(O(1))</td>
<td>search (O(n))</td>
</tr>
<tr>
<td>sorted circular array</td>
<td>search / shift (O(n))</td>
<td>move front (O(1))</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place (O(n))</td>
<td>remove at front (O(1))</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place (O(n))</td>
<td>leftmost (O(n))</td>
</tr>
</tbody>
</table>

More on possibilities

• If priorities are random, binary search tree will likely do better
 – \(O(\log n) \) insert and \(O(\log n) \) deleteMin on average

• One more idea: if priorities are 0, 1, …, \(k \) can use array of lists
 – insert: add to front of list at \(arr[priority] \), \(O(1) \)
 – deleteMin: remove from lowest non-empty list \(O(k) \)

• We are about to see a data structure called a “binary heap”
 – \(O(\log n) \) insert and \(O(\log n) \) deleteMin worst-case
 • Possible because we don’t support unneeded operations; no need to maintain a full sort
 • Very good constant factors
 • If items arrive in random order, then insert is \(O(1) \) on average

Tree terms (review?)

The binary heap data structure implementing the priority queue ADT will be a tree, so worth establishing some terminology

- root(tree)
- depth(node)
- leaves(tree)
- height(tree)
- children(node)
- degree(node)
- parent(node)
- branching factor(tree)
- siblings(node)
- ancestors(node)
- descendents(node)
- subtree(node)

Kinds of trees

Certain terms define trees with specific structure

- Binary tree: Each node has at most 2 children (branching factor 2)
- \(n \)-ary tree: Each node has at most \(n \) children (branching factor \(n \))
- Perfect tree: Each row completely full
- Complete tree: Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a perfect tree with \(n \) nodes? A complete tree?

Our data structure

Finally, then, a binary min-heap (or just binary heap or just heap) is:

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is greater than the priority of its parent
 – Not a binary search tree

So:

- Where is the highest-priority item?
- What is the height of a heap with \(n \) items?
Operations: basic idea

- **findMin**: return root.data
- **deleteMin**:
 1. answer = root.data
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
- **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
- Preserve structure property
- Break and restore heap property

DeleteMin

1. Delete (and later return) value at root node

2. Restore the Structure Property

- We now have a “hole” at the root
 - Need to fill the hole with another value
- When we are done, the tree will have one less node and must still be complete

3. Restore the Heap Property

- Percolate down:
 - Keep comparing with both children
 - Swap with lesser child and go down one level
 - Done if both children are /item or reached a leaf node

Why is this correct? What is the run time?

DeleteMin: Run Time Analysis

- Run time is $O(\text{height of heap})$
- A heap is a complete binary tree
- Height of a complete binary tree of n nodes:
 - $\text{height} = \lceil \log_2(n) \rceil$
- Run time of deleteMin is $O(\log n)$
Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property

Maintain the heap property

Percolate up:
- Put new data in new location
- If parent larger, swap with parent, and continue
- Done if parent ≤ item or reached root

Why is this correct? What is the run time?

Insert: Run Time Analysis

- Like deleteMin, worst-case time proportional to tree height
 - $O(\log n)$
- But... deleteMin needs the “last used” complete-tree position and insert needs the “next to use” complete-tree position
 - If “keep a reference to there” then insert and deleteMin
 have to adjust that reference: $O(\log n)$ in worst case
 - Could calculate how to find it in $O(\log n)$ from the root given the size of the heap
 - But it’s not easy
 - And then insert is always $O(\log n)$, promised $O(1)$ on average (assuming random arrival of items)
- There’s a “trick”: don’t represent complete trees with explicit edges!