CSE332: Data Abstractions
Lecture 4: Priority Queues

Dan Grossman
Spring 2012
A new ADT: Priority Queue

- Textbook Chapter 6
 - Will go back to binary search trees and hash tables
 - Nice to see a new and surprising data structure first

- A **priority queue** holds **compare-able data**
 - Unlike stacks and queues need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Many data structures require this: dictionaries, sorting
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general
 - Typically two fields, the **priority** and the **data**
Priorities

- Each item has a “priority”
 - The lesser item is the one with the greater priority
 - So “priority 1” is more important than “priority 4”
 - (Just a convention)

- Operations:
 - insert
 - deleteMin
 - is_empty

- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily
Example

```
insert x1 with priority 5
insert x2 with priority 3
insert x3 with priority 4
a = deleteMin  // x2
b = deleteMin  // x3
insert x4 with priority 2
insert x5 with priority 6
c = deleteMin  // x4
d = deleteMin  // x1
```

- Analogy: `insert` is like `enqueue`, `deleteMin` is like `dequeue`
 - But the whole point is to use priorities instead of FIFO
Applications

Like all good ADTs, the priority queue arises often
 – Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system
 – “critical” before “interactive” before “compute-intensive”
 – Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)
• Select print jobs in order of decreasing length?
• Forward network packets in order of urgency
• Select most frequent symbols for data compression (cf. CSE143)
• Sort (first \texttt{insert} all, then repeatedly \texttt{deleteMin})
 – Much like Project 1 uses a stack to implement reverse
More applications

• “Greedy” algorithms
 – Will see an example when we study graphs in a few weeks

• Discrete event simulation (system simulation, virtual worlds, …)
 – Each event e happens at some time t, updating system state and generating new events e_1, \ldots, e_n at times $t+t_1, \ldots, t+t_n$
 – Naïve approach: advance “clock” by 1 unit at a time and process any events that happen then
 – Better:
 • *Pending events* in a priority queue (priority = event time)
 • Repeatedly: `deleteMin` and then `insert` new events
 • Effectively “set clock ahead to next event”
Finding a good data structure

• Will show an efficient, non-obvious data structure
 – But first let’s analyze some “obvious” ideas for \(n \) data items
 – All times worst-case; assume arrays “have room”

\[
\begin{array}{ll}
data & \text{insert algorithm / time} & \text{deleteMin algorithm / time} \\
\text{unsorted array} & & \\
\text{unsorted linked list} & & \\
\text{sorted circular array} & & \\
\text{sorted linked list} & & \\
\text{binary search tree} & & \\
\end{array}
\]
Need a good data structure!

- Will show an efficient, non-obvious data structure for this ADT
 - But first let’s analyze some “obvious” ideas for \(n \) data items
 - All times worst-case; assume arrays “have room”

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end</td>
<td>search</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O(1))</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front</td>
<td>search</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O(1))</td>
</tr>
<tr>
<td>sorted circular array</td>
<td>search / shift</td>
<td>move front</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O(n))</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>put in right place</td>
<td>remove at front</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O(n))</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place</td>
<td>leftmost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(O(n))</td>
</tr>
</tbody>
</table>
More on possibilities

- If priorities are random, binary search tree will likely do better
 - \(O(\log n) \) insert and \(O(\log n) \) deleteMin on average

- One more idea: if priorities are 0, 1, ..., \(k \) can use array of lists
 - insert: add to front of list at \(\text{arr}[\text{priority}] \), \(O(1) \)
 - deleteMin: remove from lowest non-empty list \(O(k) \)

- We are about to see a data structure called a “binary heap”
 - \(O(\log n) \) insert and \(O(\log n) \) deleteMin worst-case
 - Possible because we don’t support unneeded operations; no need to maintain a full sort
 - Very good constant factors
 - If items arrive in random order, then insert is \(O(1) \) on average
Tree terms (review?)

The binary heap data structure implementing the priority queue ADT will be a tree, so worth establishing some terminology:

- **root**(tree)
- **leaves**(tree)
- **children**(node)
- **parent**(node)
- **siblings**(node)
- **ancestors**(node)
- **descendants**(node)
- **subtree**(node)

Tree T

depth(node)
height(tree)
degree(node)
branching factor(tree)
Kinds of trees

Certain terms define trees with specific structure

- **Binary tree**: Each node has at most 2 children (branching factor 2)
- **n-ary tree**: Each node has at most n children (branching factor n)
- **Perfect tree**: Each row completely full
- **Complete tree**: Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a perfect tree with n nodes? A complete tree?
Our data structure

Finally, then, a binary min-heap (or just binary heap or just heap) is:

- **Structure property:** A complete binary tree
- **Heap property:** The priority of every (non-root) node is greater than the priority of its parent
 - Not a binary search tree

So:

- Where is the highest-priority item?
- What is the height of a heap with n items?
Operations: basic idea

- **findMin**: return root.data
- **deleteMin**:
 1. answer = root.data
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
- **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
- Preserve structure property
- Break and restore heap property
DeleteMin

1. Delete (and later return) value at root node
2. Restore the Structure Property

• We now have a “hole” at the root
 – Need to fill the hole with another value

• When we are done, the tree will have one less node and must still be complete
3. Restore the Heap Property

Percolate down:
- Keep comparing with both children
- Swap with lesser child and go down one level
- Done if both children are \geq item or reached a leaf node

Why is this correct? What is the run time?
DeleteMin: Run Time Analysis

- Run time is $O(\text{height of heap})$

- A heap is a complete binary tree

- Height of a complete binary tree of n nodes?
 - $\text{height} = \lceil \log_2(n) \rceil$

- Run time of deleteMin is $O(\log n)$
Insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct
Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property
Maintain the heap property

Percolate up:
- Put new data in new location
- If parent larger, swap with parent, and continue
- Done if parent ≤ item or reached root

Why is this correct? What is the run time?
Insert: Run Time Analysis

- Like `deleteMin`, worst-case time proportional to tree height
 - $O(\log n)$

- But... `deleteMin` needs the “last used” complete-tree position and `insert` needs the “next to use” complete-tree position
 - If “keep a reference to there” then `insert` and `deleteMin` have to adjust that reference: $O(\log n)$ in worst case
 - Could calculate how to find it in $O(\log n)$ from the root given the size of the heap
 - But it’s not easy
 - And then `insert` is always $O(\log n)$, promised $O(1)$ on average (assuming random arrival of items)

- There’s a “trick”: don’t represent complete trees with explicit edges!