Intractable Graph Problems

- Graph problems we studied all had efficient solutions (roughly $O(|V|^2)$ or better)
 - Topological sort
 - Traversals/connectedness
 - Shortest paths
 - Minimum Spanning Tree
- But there are plenty of intractable graph problems
 - Worst-case exponential in some aspect of the problem as far as we know
 - Topic studied in CSE312 and CSE421, but do not want to give false impression that there is always an efficient solution to everything
 - Common instances or approximate solutions can be better

Vertex Cover: Optimal

- Input: A graph (V,E)
- Output: A minimum size subset S of V such that for every edge (u,v) in E, at least one of u or v is in S

- $O(2^{|V|})$ algorithm: Try every subset of vertices; pick smallest one
- $O(|V|^k)$ algorithm: Unknown, probably does not exist

Vertex Cover: Decision Problem

- Input: A graph (V,E) and a number m
- Output: A subset S of V such that for every edge (u,v) in E, at least one of u or v is in S and $|S|=m$ (if such an S exists)

- $O(2^m)$ algorithm: Try every subset of vertices of size m
- $O(m^k)$ algorithm: Unknown, probably does not exist

Good enough: Binary search on m can solve the original problem

Easy to verify a solution: See if S has size m and covers edges

Traveling Salesman

[Like vertex cover, usually interested in the optimal solution, but we can ask a yes/no question and rely on binary search for optimal]

- Input: A complete directed graph (V,E) and a number m
- Output: A path that visits each vertex exactly once and has total cost $< m$ if one exists

- $O(|V|!)$ algorithm: Try every path, stop if find cheap enough one

- $O(|V|^k)$ algorithm: Try every path, stop if find cheap enough one

Verifying a solution: Easy
Clique

Input: An undirected graph \((V,E)\) and a number \(m\)
Output: Is there a subgraph of \(m\) nodes such that every edge in the subgraph is present?

Naïve algorithm: Try all subsets of \(m\) nodes

Verifying a solution: Easy

Not Just Graph Problems

- Every problem studied in CSE332 has an efficient solution
 - Correct cause and effect: Chose to study problems for which we know efficient solutions!
- There are plenty of intractable problems...

Subset Sum

Input: An array of \(n\) numbers and a target-sum \(sum\)
Output: A subset of the numbers that add up to \(sum\) if one exists

\(O(2^n)\) algorithm: Try every subset of array
\(O(n^k)\) algorithm: Unknown, probably does not exist

Satisfiability

Input: a logic formula of size \(m\) containing \(n\) variables
Output: An assignment of Boolean values to the variables in the formula such that the formula is true

\(O(m \times 2^n)\) algorithm: Try every variable assignment
\(O(m^k n^k)\) algorithm: Unknown, probably does not exist

So… what to do?

- Given a problem, how can you:
 - Find an efficient solution…
 - … or prove that one (probably) does not exist?
- See CSE312, CSE421, CSE431