“Scheduling note”

- “We now return to our interrupted program” on graphs
 - Last “graph lecture” was lecture 17
 - Shortest-path problem
 - Dijkstra’s algorithm for graphs with non-negative weights

- Why this strange schedule?
 - Needed to do parallelism and concurrency in time for project 3 and homeworks 6 and 7
 - But cannot delay all of graphs because of the CSE312 co-requisite

- So: not the most logical order, but hopefully not a big deal

Spanning Trees

- A simple problem: Given a connected graph \(G=(V,E) \), find a minimal subset of the edges such that the graph is still connected
 - A graph \(G_2=(V,E_2) \) such that \(G_2 \) is connected and removing any edge from \(E_2 \) makes \(G_2 \) disconnected

Observations

1. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected

4. A tree with \(|V|\) nodes has \(|V|-1\) edges
 - So every solution to the spanning tree problem has \(|V|-1\) edges

Motivation

A spanning tree connects all the nodes with as few edges as possible

- Example: A “phone tree” so everybody gets the message and no unnecessary calls get made
 - Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem

- Will do that next, after intuition from the simpler case

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not create a cycle
Spanning tree via DFS

```java
spanning_tree(Graph G) {
    for each node i: i.marked = false
    for some node i: f(i)
}
f(Node i) {
    i.marked = true
    for each j adjacent to i:
        if(!j.marked) {
            add(i, j) to output
            f(j) // DFS
        }
}
```

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: $O(|E|)$

Example

Stack
f(1)
f(2)

Output: (1,2)

Example

Stack
f(1)
f(2)
f(7)

Output: (1,2), (2,7)

Example

Stack
f(1)
f(2)
f(7)
f(5)

Output: (1,2), (2,7), (7,5)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)

Output: (1,2), (2,7), (7,5), (5,4)
Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(6)
f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
f(6)
f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
 - Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:
- Depends on how quickly you can detect cycles
- Reconsider after the example

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output:

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7)

Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Cycle Detection

- To decide if an edge could form a cycle is $O(|V|)$ because we may need to traverse all edges already in the output.
- So overall algorithm would be $O(|V||E|)$.
- But there is a faster way using the disjoint-set ADT:
 - Initially, each item is in its own 1-element set.
 - `find(u,v)`: are u and v in the same set?
 - `union(u,v)`: union (combine) the sets containing u and v.
 (Operations often presented slightly differently.)

Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: u and v are connected in output-so-far if

u and v in the same set

- Initially, each node is in its own set.
- When processing edge (u,v):
 - If `find(u,v)`, then do not add the edge.
 - Else add the edge and `union(u,v)`.

Why Do This?

- Using an ADT someone else wrote is easier than writing your own cycle detection.
- It is also more efficient.
- Chapter 8 of your textbook gives several implementations of different sophistication and asymptotic complexity.
 - A slightly clever and easy-to-implement one is $O(\log n)$ for `find` and `union` (as we defined the operations here).
 - Lets our spanning tree algorithm be $O(|E|\log|V|)$.

[We skipped disjoint-sets as an example of “sometimes knowing-an-ADT-exists and you-can-learn-it-on-your-own suffices”]

Summary So Far

The spanning-tree problem

- Add nodes to partial tree approach is $O(|E|)$.
- Add acyclic edges approach is $O(|E|\log|V|)$.
 - Using the disjoint-set ADT “as a black box”.

But really want to solve the minimum-spanning-tree problem:

- Given a weighted undirected graph, give a spanning tree of minimum weight.
- Same two approaches will work with minor modifications.
- Both will be $O(|E|\log|V|)$.

Getting to the Point

Algorithm #1

Shortest-path is to Dijkstra’s Algorithm as

Minimum Spanning Tree is to Prim’s Algorithm.

(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack.)

Algorithm #2

Kruskal’s Algorithm for Minimum Spanning Tree is

Exactly our 2nd approach to spanning tree but process edges in cost order.
Prim's Algorithm Idea

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. **Pick the edge with the smallest weight that connects “known” to “unknown.”**

Recall Dijkstra “picked edge with closest known distance to source”
- That is not what we want here
- Otherwise identical
- Compare to slides in lecture 17 if you do not believe me

The Algorithm

1. For each node \(v \), set \(v\text{.cost} = \infty \) and \(v\text{.known} = \text{false} \)
2. Choose any node \(v \)
 a) Mark \(v \) as known
 b) For each edge \((v,u) \) with weight \(w \), set \(u\text{.cost}=w \) and \(u\text{.prev}=v \)
3. While there are unknown nodes in the graph
 a) Select the unknown node \(v \) with lowest cost
 b) Mark \(v \) as known and add \((v, v\text{.prev}) \) to output
 c) For each edge \((v,u) \) with weight \(w \),

 if\((w < u\text{.cost}) \) {
 \(u\text{.cost} = w; \)
 \(u\text{.prev} = v; \)
 }

Example

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>??</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td>5</td>
<td>D</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Analysis

- Correctness ??
 - A bit tricky
 - Intuitively similar to Dijkstra

- Run-time
 - Same as Dijkstra
 - \(O(|E| \log |V|)\) using a priority queue

Kruskal’s Algorithm

Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.

- But now consider the edges in order by weight

So:

- Sort edges: \(O(|E| \log |E|)\)
- Iterate through edges using union-find for cycle detection
 \(O(|E| \log |V|)\)

Somewhat better:

- Floyd’s algorithm to build min-heap with edges \(O(|E|)\)
- Iterate through edges using union-find for cycle detection and \texttt{deleteMin} to get next edge
 \(O(|E| \log |V|)\)
- Not better worst-case asymptotically, but often stop long before considering all edges
Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V|-1
 - Consider next smallest edge \((u, v)\)
 - If \(\text{find}(u, v)\) indicates \(u\) and \(v\) are in different sets
 - Output \((u, v)\)
 - Union \((u, v)\)

Recall invariant:
\(u\) and \(v\) in same set if and only if connected in output-so-far

Example

Edges in sorted order:
1. \((A, D), (C, D), (B, E), (D, E)\)
2. \((A, B), (C, F), (A, C)\)
3. \((E, G)\)
4. \((D, G), (B, D)\)
5. \((D, F)\)
6. \((F, G)\)

Output:
\((A, D)\)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:
1. \((A, D), (C, D), (B, E), (D, E)\)
2. \((A, B), (C, F), (A, C)\)
3. \((E, G)\)
4. \((D, G), (B, D)\)
5. \((D, F)\)
6. \((F, G)\)

Output:
\((A, D), (C, D)\)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:
1. \((A, D), (C, D), (B, E), (D, E)\)
2. \((A, B), (C, F), (A, C)\)
3. \((E, G)\)
4. \((D, G), (B, D)\)
5. \((D, F)\)
6. \((F, G)\)

Output:
\((A, D), (C, D), (B, E)\)

Note: At each step, the union/find sets are the trees in the forest

Edges in sorted order:
1. \((A, D), (C, D), (B, E), (D, E)\)
2. \((A, B), (C, F), (A, C)\)
3. \((E, G)\)
4. \((D, G), (B, D)\)
5. \((D, F)\)
6. \((F, G)\)

Output:
\((A, D), (C, D), (B, E), (D, E)\)

Note: At each step, the union/find sets are the trees in the forest
Correctness

Kruskal’s algorithm is clever, simple, and efficient
– But does it generate a minimum spanning tree?
– How can we prove it?

First: It generates a spanning tree
– Intuition: Graph started connected and we added every edge that did not create a cycle
– Proof by contradiction: Suppose \(u \) and \(v \) are disconnected in Kruskal’s result. Then there’s a path from \(u \) to \(v \) in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

The inductive proof set-up

Let \(F \) (stands for “forest”) be the set of edges Kruskal has added at some point during its execution.

Claim: \(F \) is a subset of one or more MSTs for the graph
– Therefore, once \(|F|=|V|-1 \), we have an MST

Proof: By induction on \(|F| \)

Base case: \(|F|=0 \): The empty set is a subset of all MSTs

Inductive case: \(|F|=k+1 \): By induction, before adding the \((k+1)\)th edge (call it \(e \)), there was some MST \(T \) such that \(F-\{e\} \subseteq T \)...
Staying a subset of some MST

Claim: F is a subset of one or more MSTs for the graph

So far: \(F - \{e\} \subseteq T \):

Two disjoint cases:
- If \(\{e\} \subseteq T \): Then \(F \subseteq T \) and we’re done
- Else \(e \) forms a cycle with some simple path (call it \(p \)) in \(T \)
 - Must be since \(T \) is a spanning tree

Claim: \(e2 \).weight == \(e \).weight

- If \(e2 \).weight > \(e \).weight, then \(T \) is not an MST because \(T - \{e2\} + \{e\} \) is a spanning tree with lower cost: contradiction
- If \(e2 \).weight < \(e \).weight, then Kruskal would have already considered \(e2 \). It would have added it since \(T \) has no cycles and \(F - \{e\} \subseteq T \). But \(e2 \) is not in \(F \): contradiction