
CSE332: Data Abstractions

Lecture 21: Shared-Memory Concurrency &

Mutual Exclusion

Dan Grossman

Spring 2012

Toward sharing resources (memory)

Have been studying parallel algorithms using fork-join

– Lower span via parallel tasks

Algorithms all had a very simple structure to avoid race conditions

– Each thread had memory “only it accessed”

• Example: array sub-range

– On fork, “loan” some memory to “forkee” and do not access

that memory again until after join on the “forkee”

Strategy won’t work well when:

– Memory accessed by threads is overlapping or unpredictable

– Threads are doing independent tasks needing access to same

resources (rather than implementing the same algorithm)

2 CSE332: Data Abstractions Spring 2012

Concurrent Programming

Concurrency: Correctly and efficiently managing access to shared

resources from multiple possibly-simultaneous clients

Requires coordination, particularly synchronization to avoid

incorrect simultaneous access: make somebody block

– join is not what we want

– Want to block until another thread is “done using what we

need” not “completely done executing”

Even correct concurrent applications are usually highly

non-deterministic: how threads are scheduled affects what

operations from other threads they see when

– non-repeatability complicates testing and debugging

3 CSE332: Data Abstractions Spring 2012

Examples

Multiple threads:

1. Processing different bank-account operations

– What if 2 threads change the same account at the same time?

2. Using a shared cache of recent files (e.g., hashtable)

– What if 2 threads insert the same file at the same time?

3. Creating a pipeline (think assembly line) with a queue for handing

work to next thread in sequence?

– What if enqueuer and dequeuer adjust a circular array queue

at the same time?

4 CSE332: Data Abstractions Spring 2012

Why threads?

Unlike parallelism, not about implementing algorithms faster

But threads still useful for:

• Code structure for responsiveness

– Example: Respond to GUI events in one thread while

another thread is performing an expensive computation

• Processor utilization (mask I/O latency)

– If 1 thread “goes to disk,” have something else to do

• Failure isolation

– Convenient structure if want to interleave multiple tasks and

do not want an exception in one to stop the other

5 CSE332: Data Abstractions Spring 2012

Sharing, again

It is common in concurrent programs that:

• Different threads might access the same resources in an

unpredictable order or even at about the same time

• Program correctness requires that simultaneous access be

prevented using synchronization

• Simultaneous access is rare

– Makes testing difficult

– Must be much more disciplined when designing /

implementing a concurrent program

– Will discuss common idioms known to work

6 CSE332: Data Abstractions Spring 2012

Canonical example

Correct code in a single-threaded world

7 CSE332: Data Abstractions

class BankAccount {

 private int balance = 0;

 int getBalance() { return balance; }

 void setBalance(int x) { balance = x; }

 void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 }

 … // other operations like deposit, etc.

}

Spring 2012

Interleaving

Suppose:

– Thread T1 calls x.withdraw(100)

– Thread T2 calls y.withdraw(100)

If second call starts before first finishes, we say the calls interleave

– Could happen even with one processor since a thread can

be pre-empted at any point for time-slicing

If x and y refer to different accounts, no problem

– “You cook in your kitchen while I cook in mine”

– But if x and y alias, possible trouble…

8 CSE332: Data Abstractions Spring 2012

A bad interleaving

Interleaved withdraw(100) calls on the same account

– Assume initial balance == 150

9 CSE332: Data Abstractions

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

“Lost withdraw” –

unhappy bank

Spring 2012

Incorrect “fix”

It is tempting and almost always wrong to fix a bad interleaving by

rearranging or repeating operations, such as:

10 CSE332: Data Abstractions

void withdraw(int amount) {

 if(amount > getBalance())

 throw new WithdrawTooLargeException();

 // maybe balance changed

 setBalance(getBalance() – amount);

}

This fixes nothing!

• Narrows the problem by one statement

• (Not even that since the compiler could turn it back into the

old version because you didn’t indicate need to synchronize)

• And now a negative balance is possible – why?

Spring 2012

Mutual exclusion

Sane fix: Allow at most one thread to withdraw from account A at a time

– Exclude other simultaneous operations on A too (e.g., deposit)

Called mutual exclusion: One thread using a resource (here: an

account) means another thread must wait

– a.k.a. critical sections, which technically have other requirements

Programmer must implement critical sections

– “The compiler” has no idea what interleavings should or should

not be allowed in your program

– Buy you need language primitives to do it!

11 CSE332: Data Abstractions Spring 2012

Wrong!

Why can’t we implement our own mutual-exclusion protocol?
– It’s technically possible under certain assumptions, but won’t work in real languages anyway

12 CSE332: Data Abstractions

class BankAccount {

 private int balance = 0;

 private boolean busy = false;

 void withdraw(int amount) {

 while(busy) { /* “spin-wait” */ }

 busy = true;

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 busy = false;

 }

 // deposit would spin on same boolean

}

Spring 2012

Just moved the problem!

13 CSE332: Data Abstractions

while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)

 throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

“Lost withdraw” –

unhappy bank

Spring 2012

What we need

• There are many ways out of this conundrum, but we need help

from the language

• One basic solution: Locks

– Not Java yet, though Java’s approach is similar and slightly

more convenient

• An ADT with operations:

– new: make a new lock, initially “not held”

– acquire: blocks if this lock is already currently “held”

• Once “not held”, makes lock “held” [all at once!]

– release: makes this lock “not held”

• If >= 1 threads are blocked on it, exactly 1 will acquire it

14 CSE332: Data Abstractions Spring 2012

Why that works

• An ADT with operations new, acquire, release

• The lock implementation ensures that given simultaneous

acquires and/or releases, a correct thing will happen

– Example: Two acquires: one will “win” and one will block

• How can this be implemented?

– Need to “check if held and if not make held” “all-at-once”

– Uses special hardware and O/S support

• See computer-architecture or operating-systems course

– Here, we take this as a primitive and use it

15 CSE332: Data Abstractions Spring 2012

Almost-correct pseudocode

16 CSE332: Data Abstractions

class BankAccount {

 private int balance = 0;

 private Lock lk = new Lock();

 …

 void withdraw(int amount) {

 lk.acquire(); // may block

 int b = getBalance();

 if(amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount);

 lk.release();

 }

 // deposit would also acquire/release lk

}

Spring 2012

Some mistakes

• A lock is a very primitive mechanism

– Still up to you to use correctly to implement critical sections

• Incorrect: Use different locks for withdraw and deposit

– Mutual exclusion works only when using same lock

– balance field is the shared resource being protected

• Poor performance: Use same lock for every bank account

– No simultaneous operations on different accounts

• Incorrect: Forget to release a lock (blocks other threads forever!)

– Previous slide is wrong because of the exception possibility!

17 CSE332: Data Abstractions

if(amount > b) {
 lk.release(); // hard to remember!
 throw new WithdrawTooLargeException();

}

Spring 2012

Other operations

• If withdraw and deposit use the same lock, then

simultaneous calls to these methods are properly synchronized

• But what about getBalance and setBalance?

– Assume they are public, which may be reasonable

• If they do not acquire the same lock, then a race between
setBalance and withdraw could produce a wrong result

• If they do acquire the same lock, then withdraw would block

forever because it tries to acquire a lock it already has

18 CSE332: Data Abstractions Spring 2012

Re-acquiring locks?

• Can’t let outside world call

 setBalance1

• Can’t have withdraw call

setBalance2

• Alternately, we can modify

the meaning of the Lock ADT

 to support re-entrant locks

– Java does this

– Then just use
setBalance2

19 CSE332: Data Abstractions

int setBalance1(int x) {

 balance = x;

}

int setBalance2(int x) {

 lk.acquire();

 balance = x;

 lk.release();

}

void withdraw(int amount) {

 lk.acquire();

 …

 setBalance1(b – amount);

 lk.release();

}

Spring 2012

Re-entrant lock

A re-entrant lock (a.k.a. recursive lock)

• “Remembers”

– the thread (if any) that currently holds it

– a count

• When the lock goes from not-held to held, the count is set to 0

• If (code running in) the current holder calls acquire:

– it does not block

– it increments the count

• On release:

– if the count is > 0, the count is decremented

– if the count is 0, the lock becomes not-held

20 CSE332: Data Abstractions Spring 2012

Re-entrant locks work

This simple code works fine
provided lk is a reentrant lock

• Okay to call setBalance

directly

• Okay to call withdraw

(won’t block forever)

21 CSE332: Data Abstractions

int setBalance(int x) {

 lk.acquire();

 balance = x;

 lk.release();

}

void withdraw(int amount) {

 lk.acquire();

 …

 setBalance1(b – amount);

 lk.release();

}

Spring 2012

Now some Java

Java has built-in support for re-entrant locks

– Several differences from our pseudocode

– Focus on the synchronized statement

22 CSE332: Data Abstractions

synchronized (expression) {

 statements

}

1. Evaluates expression to an object

• Every object “is a lock” in Java (but not primitive types)

2. Acquires the lock, blocking if necessary

• “If you get past the {, you have the lock”

3. Releases the lock “at the matching }”

• Even if control leaves due to throw, return, etc.

• So impossible to forget to release the lock

Spring 2012

Java version #1 (correct but non-idiomatic)

23 CSE332: Data Abstractions

class BankAccount {

 private int balance = 0;

 private Object lk = new Object();

 int getBalance()

 { synchronized (lk) { return balance; } }

 void setBalance(int x)

 { synchronized (lk) { balance = x; } }

 void withdraw(int amount) {

 synchronized (lk) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 }

 // deposit would also use synchronized(lk)

}

Spring 2012

Improving the Java

• As written, the lock is private

– Might seem like a good idea

– But also prevents code in other classes from writing

operations that synchronize with the account operations

• More idiomatic is to synchronize on this…

– Also more convenient: no need to have an extra object

24 CSE332: Data Abstractions Spring 2012

Java version #2

25 CSE332: Data Abstractions

class BankAccount {

 private int balance = 0;

 int getBalance()

 { synchronized (this){ return balance; } }

 void setBalance(int x)

 { synchronized (this){ balance = x; } }

 void withdraw(int amount) {

 synchronized (this) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 }

 // deposit would also use synchronized(this)

}

Spring 2012

Syntactic sugar

Version #2 is slightly poor style because there is a shorter way to

say the same thing:

 Putting synchronized before a method declaration means the

entire method body is surrounded by

synchronized(this){…}

Therefore, version #3 (next slide) means exactly the same thing as

version #2 but is more concise

26 CSE332: Data Abstractions Spring 2012

Java version #3 (final version)

27 CSE332: Data Abstractions

class BankAccount {

 private int balance = 0;

 synchronized int getBalance()

 { return balance; }

 synchronized void setBalance(int x)

 { balance = x; }

 synchronized void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 // deposit would also use synchronized

}

Spring 2012

More Java notes

• Class java.util.concurrent.locks.ReentrantLock

works much more like our pseudocode

– Often use try { … } finally { … } to avoid forgetting

to release the lock if there’s an exception

• Also library and/or language support for readers/writer locks and

condition variables (future lecture)

• Java provides many other features and details. See, for

example:

– Chapter 14 of CoreJava, Volume 1 by Horstmann/Cornell

– Java Concurrency in Practice by Goetz et al

28 CSE332: Data Abstractions Spring 2012

