Outline

Done:
- Simple ways to use parallelism for counting, summing, finding
- Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible
- Parallel prefix:
 - This “key trick” typically underlies surprising parallelization
 - Enables other things like packs
- Parallel sorting: quicksort (not in place) and mergesort
 - Easy to get a little parallelism
 - With cleverness can get a lot

The prefix-sum problem

Given `int[]` input, produce `int[]` output where `output[i]` is the sum of `input[0]+input[1]+...+input[i]`

Sequential can be a CSE142 exam problem:
```java
int[] prefix_sum(int[] input){
    int[] output = new int[input.length];
    output[0] = input[0];
    for(int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}
```

Does not seem parallelizable
- Work: $O(n)$, Span: $O(n)$
- This algorithm is sequential, but a different algorithm has
 Work: $O(n)$, Span: $O(\log n)$

Parallel prefix-sum

- The parallel-prefix algorithm does two passes
 - Each pass has $O(n)$ work and $O(\log n)$ span
 - So in total there is $O(n)$ work and $O(\log n)$ span
 - So like with array summing, parallelism is $n/\log n$
 - An exponential speedup

 First pass builds a tree bottom-up: the “up” pass
 Second pass traverses the tree top-down: the “down” pass

Local bragging

Historical note:
- Original algorithm due to R. Ladner and M. Fischer at UW in 1977
- Richard Ladner joined the UW faculty in 1971 and hasn’t left

Example

```
+----+----+----+----+
| 0  | 1  | 2  | 3  |
+----+----+----+----+
| 0.1| 1.2| 2.3| 3.4|
+----+----+----+----+
| 0.2| 1.2| 2.3| 3.4|
+----+----+----+----+
| 0.4| 1.6| 2.4| 3.6|
+----+----+----+----+
| 0.7| 1.6| 2.6| 3.8|
+----+----+----+----+
```

```
+----+----+----+----+
| 0.1| 1.2| 2.3| 3.4|
+----+----+----+----+
| 4.8| 5.6| 6.7| 7.8|
+----+----+----+----+
| 0.2| 1.2| 2.3| 3.4|
+----+----+----+----+
| 0.4| 1.6| 2.4| 3.6|
+----+----+----+----+
| 0.7| 1.6| 2.6| 3.8|
+----+----+----+----+
```

input
```
6  4  16  10  16  14  2  8
```

output
Example

The algorithm, part 1

1. Up: Build a binary tree where
 - Root has sum of the range \([x, y]\)
 - If a node has sum of \([lo, hi]\) and \(hi > lo\),
 - Left child has sum of \([lo, middle]\)
 - Right child has sum of \([middle, hi]\)
 - A leaf has sum of \([i, i+1]\), i.e., \(input[i]\)

This is an easy fork-join computation: combine results by actually building a binary tree with all the range-sums
 - Tree built bottom-up in parallel
 - Could be more clever with an array like with heaps

Analysis: \(O(n)\) work, \(O(\log n)\) span

The algorithm, part 2

2. Down: Pass down a value \(fromLeft\)
 - Root given a \(fromLeft\) of 0
 - Node takes its \(fromLeft\) value and
 - Passes its left child the same \(fromLeft\)
 - Passes its right child its \(fromLeft\) plus its left child’s sum (as stored in part 1)
 - At the leaf for array position \(i\),
 \(output[i] = fromLeft + input[i]\)

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result
 - Leaves assign to \(output\)
 - Invariant: \(fromLeft\) is sum of elements left of the node’s range

Analysis: \(O(n)\) work, \(O(\log n)\) span

Sequential cut-off

Adding a sequential cut-off is easy as always:

- Up:
 just a sum, have leaf node hold the sum of a range

- Down:
 \(output[lo] = fromLeft + input[lo];\)
 \(for(i=lo+1; i < hi; i++)\)
 \(output[i] = output[i-1] + input[i]\)

Pack

[Non-standard terminology]

Given an array \(input\), produce an array \(output\) containing only elements such that \(f(elt)\) is true

Example: \(input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]\)
\(f: is\ elt > 10\)
\(output [17, 11, 13, 19, 24]\)

Parallelizable?
- Finding elements for the output is easy
- But getting them in the right place seems hard

Parallel prefix, generalized

Just as sum-prefix was the simplest example of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems
- Minimum, maximum of all elements to the left of \(i\)
- Is there an element to the left of \(i\) satisfying some property?
- Count of elements to the left of \(i\) satisfying some property
 - This last one is perfect for an efficient parallel pack...
 - Perfect for building on top of the “parallel prefix trick”
- We did an inclusive sum, but exclusive is just as easy
Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
 \[
 \text{input} = [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 \]
 \[
 \text{bits} = [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]
 \]
2. Parallel-prefix sum on the bit-vector
 \[
 \text{bitsum} = [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]
 \]
3. Parallel map to produce the output
 \[
 \text{output} = \text{new array of size bitsum}[n-1]
 \text{forAll}(i=0; i < \text{input}.length; i++){
 \text{if} (\text{bits}[i] == 1) \\
 \quad \text{output}[\text{bitsum}[i]-1] = \text{input}[i];
 }
 \]

Spring 2012

Pack comments

• First two steps can be combined into one pass
 – Just using a different base case for the prefix sum
 – No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum
 – Again no effect on asymptotic complexity

• Analysis: \(O(n)\) work, \(O(\log n)\) span
 – 2 or 3 passes, but 3 is a constant

• Parallelized packs will help us parallelize quicksort...

Quicksort review

Recall quicksort was sequential, in-place, expected time \(O(n \log n)\)

Best / expected case work

1. Pick a pivot element \(O(1)\)
2. Partition all the data into:
 A. The elements less than the pivot \(O(n)\)
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C \(2T(n/2)\)

How should we parallelize this?

Quicksort

Best / expected case work

1. Pick a pivot element \(O(1)\)
2. Partition all the data into:
 A. The elements less than the pivot \(O(n)\)
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C \(2T(n/2)\)

Easy: Do the two recursive calls in parallel

• Work: unchanged of course \(O(n \log n)\)
• Span: now \(T(n) = O(n) + 1T(n/2) = O(n)\)
• So parallelism (i.e., work / span) is \(O(\log n)\)

Doing better

• \(O(\log n)\) speed-up with an infinite number of processors is okay, but a bit underwhelming
 – Sort \(10^9\) elements 30 times faster

• Google searches strongly suggest quicksort cannot do better because the partition cannot be parallelized
 – The Internet has been known to be wrong 😐
 – But we need auxiliary storage (no longer in place)
 – In practice, constant factors may make it not worth it, but remember Amdahl’s Law

• Already have everything we need to parallelize the partition...

Parallel partition (not in place)

Partition all the data into:

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

• This is just two packs!
 – We know a pack is \(O(n)\) work, \(O(\log n)\) span
 – Pack elements less than pivot into left side of aux array
 – Pack elements greater than pivot into right size of aux array
 – Put pivot between them and recursively sort
 – With a little more cleverness, can do both packs at once but no effect on asymptotic complexity

• With \(O(\log n)\) span for partition, the total span for quicksort is
 \(T(n) = O(\log n) + 1T(n/2) = O(\log^2 n)\)
Example

- Step 1: pick pivot as median of three
 \[8 \ 1 \ 4 \ 9 \ 0 \ 3 \ 5 \ 2 \ 7 \ 6 \]

- Steps 2a and 2c (combinable): pack less than, then pack greater than into a second array
 - Fancy parallel prefix to pull this off not shown
 \[1 \ 4 \ 0 \ 3 \ 5 \ 2 \] \[6 \ 8 \ 9 \ 7 \]

- Step 3: Two recursive sorts in parallel
 - Can sort back into original array (like in mergesort)

Now mergesort

Recall mergesort: sequential, not-in-place, worst-case \(O(n \log n) \)

1. Sort left half and right half \(2T(n/2) \)
2. Merge results \(O(n) \)

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the span to \(T(n) = O(n) + T(n/2) = O(n) \)

- Again, parallelism is \(O(\log n) \)
- To do better, need to parallelize the merge
 - The trick won’t use parallel prefix this time

Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

- Idea: Suppose the larger subarray has \(n \) elements. In parallel:
 - Merge the first \(n/2 \) elements of the larger half with the “appropriate” elements of the smaller half
 - Merge the second \(n/2 \) elements of the larger half with the rest of the smaller half

Parallelizing the merge

1. Get median of bigger half: \(O(1) \) to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: \(O(\log n) \) to do binary search on the sorted small half
Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: $O(\log n)$ to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: $O(1)$

When we do each merge in parallel, we split the bigger one in half and use binary search to split the smaller one.

Analysis

• Sequential recurrence for mergesort:
 $T(n) = 2T(n/2) + O(n)$ which is $O(n \log n)$

• Doing the two recursive calls in parallel but a sequential merge:
 Work: same as sequential Span: $T(n) = 1T(n/2) + O(n)$ which is $O(n)$

• Parallel merge makes work and span harder to compute
 – Each merge step does an extra $O(\log n)$ binary search to find how to split the smaller subarray
 – To merge n elements total, do two smaller merges of possibly different sizes
 – But worst-case split is $(1/4)n$ and $(3/4)n$
 • When subarrays same size and “smaller” splits “all” / “none”

Analysis continued

For just a parallel merge of n elements:
• Work is $T(n) = T(3n/4) + T(n/4) + O(\log n)$ which is $O(n)$
• Span is $T(n) = T(3n/4) + O(\log n)$, which is $O(\log^2 n)$
• (neither bound is immediately obvious, but “trust me”)

So for mergesort with parallel merge overall:
• Work is $T(n) = 2T(n/2) + O(n)$, which is $O(n \log n)$
• Span is $T(n) = 1T(n/2) + O(\log^2 n)$, which is $O(\log^3 n)$

So parallelism (work / span) is $O(n / \log^2 n)$
– Not quite as good as quicksort’s $O(n / \log n)$
 • But worst-case guarantee
– And as always this is just the asymptotic result