CSE332: Data Abstractions

Lecture 20: Parallel Prefix, Pack, and Sorting

Dan Grossman
Spring 2012
Outline

Done:
- Simple ways to use parallelism for counting, summing, finding
- Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible
- **Parallel prefix:**
 - This “key trick” typically underlies surprising parallelization
 - Enables other things like packs
- **Parallel sorting:** quicksort (not in place) and mergesort
 - Easy to get a little parallelism
 - With cleverness can get a lot
The prefix-sum problem

Given \(\text{int[]} \ \text{input} \), produce \(\text{int[]} \ \text{output} \) where \(\text{output}[i] \) is the sum of \(\text{input}[0]+\text{input}[1]+...+\text{input}[i] \)

Sequential can be a CSE142 exam problem:

```java
int[] prefix_sum(int[] input) {
    int[] output = new int[input.length];
    output[0] = input[0];
    for (int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}
```

Does not seem parallelizable

- Work: \(O(n) \), Span: \(O(n) \)
- This algorithm is sequential, but a different algorithm has Work: \(O(n) \), Span: \(O(\log n) \)
Parallel prefix-sum

- The parallel-prefix algorithm does two passes
 - Each pass has $O(n)$ work and $O(\log n)$ span
 - So in total there is $O(n)$ work and $O(\log n)$ span
 - So like with array summing, parallelism is $n/\log n$
 - An exponential speedup

- First pass builds a tree bottom-up: the “up” pass

- Second pass traverses the tree top-down: the “down” pass
Local bragging

Historical note:
- Original algorithm due to R. Ladner and M. Fischer at UW in 1977
- Richard Ladner joined the UW faculty in 1971 and hasn’t left

1968? 1973? recent
Example

input
6 4 16 10 16 14 2 8

output
Example

```
range  0,4  sum  36
       fromleft  0

range  0,2  sum  10
       fromleft  0

range  2,4  sum  26
       fromleft  10

range  4,6  sum  30
       fromleft  36

range  6,8  sum  66
       fromleft  66

r  0,1
s  6
f  0

r  1,2
s  4
f  6

r  2,3
s  16
f  10

r  3,4
s  10
f  26

r  4,5
s  16
f  36

r  5,6
s  14
f  52

r  6,7
s  2
f  66

r  7,8
s  8
f  68
```

input

```
6  4  16  10  16  14  2  8
```

output

```
6  10  26  36  52  66  68  76
```
The algorithm, part 1

1. Up: Build a binary tree where
 - Root has sum of the range \([x, y)\)
 - If a node has sum of \([lo, hi)\) and \(hi > lo\),
 - Left child has sum of \([lo, \text{middle})\)
 - Right child has sum of \([\text{middle}, hi)\)
 - A leaf has sum of \([i, i+1)\), i.e., input\([i]\)

This is an easy fork-join computation: combine results by actually building a binary tree with all the range-sums
 - Tree built bottom-up in parallel
 - Could be more clever with an array like with heaps

Analysis: \(O(n)\) work, \(O(\log n)\) span
The algorithm, part 2

2. Down: Pass down a value fromLeft
 - Root given a fromLeft of 0
 - Node takes its fromLeft value and
 • Passes its left child the same fromLeft
 • Passes its right child its fromLeft plus its left child’s sum (as stored in part 1)
 - At the leaf for array position i,
 \[
 \text{output}[i] = \text{fromLeft} + \text{input}[i]
 \]

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result
 - Leaves assign to output
 - Invariant: fromLeft is sum of elements left of the node’s range

Analysis: \(O(n) \) work, \(O(\log n) \) span
Sequential cut-off

Adding a sequential cut-off is easy as always:

• Up:
 just a sum, have leaf node hold the sum of a range

• Down:
 \[
 \text{output}[lo] = \text{fromLeft} + \text{input}[lo];
 \]
 \[
 \text{for}(i=lo+1; \ i < \text{hi}; \ i++)
 \]
 \[
 \text{output}[i] = \text{output}[i-1] + \text{input}[i]
 \]
Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements to the left of i
- Is there an element to the left of i satisfying some property?
- Count of elements to the left of i satisfying some property
 - This last one is perfect for an efficient parallel pack…
 - Perfect for building on top of the “parallel prefix trick”
- We did an inclusive sum, but exclusive is just as easy
Pack

[Non-standard terminology]

Given an array \textit{input}, produce an array \textit{output} containing only elements such that \(f(\text{elt}) \) is true

Example: \textit{input} \([17, 4, 6, 8, 11, 5, 13, 19, 0, 24]\) \(f: \) is \text{elt} > 10 \(\text{output} \) \([17, 11, 13, 19, 24]\)

Parallelizable?

- Finding elements for the output is easy
- But getting them in the right place seems hard
Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
 input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output
 output [17, 11, 13, 19, 24]

```java
output = new array of size bitsum[n-1]
FORALL (i=0; i < input.length; i++){
    if(bits[i]==1) output[i] = input[i];
}
```
Pack comments

• First two steps can be combined into one pass
 – Just using a different base case for the prefix sum
 – No effect on asymptotic complexity

• Can also combine third step into the down pass of the prefix sum
 – Again no effect on asymptotic complexity

• Analysis: $O(n)$ work, $O(\log n)$ span
 – 2 or 3 passes, but 3 is a constant

• Parallelized packs will help us parallelize quicksort…
Quicksort review

Recall quicksort was sequential, in-place, expected time $O(n \log n)$

1. Pick a pivot element $O(1)$
2. Partition all the data into:
 A. The elements less than the pivot $O(n)$
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C $2T(n/2)$

Best / expected case work

How should we parallelize this?
Quicksort

1. Pick a pivot element
2. Partition all the data into:
 A. The elements less than the pivot
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C

Best / expected case work

O(1)
O(n)

Easy: Do the two recursive calls in parallel
- Work: unchanged of course $O(n \log n)$
- Span: now $T(n) = O(n) + 1T(n/2) = O(n)$
- So parallelism (i.e., work / span) is $O(\log n)$
Doing better

- \(O(\log n) \) speed-up with an infinite number of processors is okay, but a bit underwhelming
 - Sort \(10^9 \) elements 30 times faster

- Google searches strongly suggest quicksort cannot do better because the partition cannot be parallelized
 - The Internet has been known to be wrong 😊
 - But we need auxiliary storage (no longer in place)
 - In practice, constant factors may make it not worth it, but remember Amdahl’s Law

- Already have everything we need to parallelize the partition…
Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

• This is just two packs!
 – We know a pack is $O(n)$ work, $O(\log n)$ span
 – Pack elements less than pivot into left side of aux array
 – Pack elements greater than pivot into right size of aux array
 – Put pivot between them and recursively sort
 – With a little more cleverness, can do both packs at once but no effect on asymptotic complexity

• With $O(\log n)$ span for partition, the total span for quicksort is
 \[T(n) = O(\log n) + 1T(n/2) = O(\log^2 n) \]
Example

• Step 1: pick pivot as median of three

• Steps 2a and 2c (combinable): pack less than, then pack greater than into a second array
 – Fancy parallel prefix to pull this off not shown

• Step 3: Two recursive sorts in parallel
 – Can sort back into original array (like in mergesort)
Now mergesort

Recall mergesort: sequential, not-in-place, worst-case $O(n \log n)$

1. Sort left half and right half
2. Merge results

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the span to $T(n) = O(n) + 1T(n/2) = O(n)$

- Again, parallelism is $O(\log n)$
- To do better, need to parallelize the merge
 - The trick won’t use parallel prefix this time
Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

| 0 | 1 | 4 | 8 | 9 | 2 | 3 | 5 | 6 | 7 |

Idea: Suppose the larger subarray has \(n \) elements. In parallel:

- Merge the first \(n/2 \) elements of the larger half with the “appropriate” elements of the smaller half
- Merge the second \(n/2 \) elements of the larger half with the rest of the smaller half
Parallelizing the merge

\[\begin{array}{cccccc}
0 & 4 & 6 & 8 & 9 \\
1 & 2 & 3 & 5 & 7
\end{array} \]
Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: $O(\log n)$ to do binary search on the sorted small half
Parallelizing the merge

1. Get median of bigger half: \(O(1)\) to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: \(O(\log n)\) to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: \(O(1)\)
Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: $O(\log n)$ to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: $O(1)$
4. Do two submerges in parallel
When we do each merge in parallel, we split the bigger one in half and use binary search to split the smaller one
Analysis

• Sequential recurrence for mergesort:
 \[T(n) = 2T(n/2) + O(n) \] which is \(O(n \log n) \)

• Doing the two recursive calls in parallel but a sequential merge:
 Work: same as sequential Span: \(T(n) = 1T(n/2) + O(n) \) which is \(O(n) \)

• Parallel merge makes work and span harder to compute
 – Each merge step does an extra \(O(\log n) \) binary search to find how to split the smaller subarray
 – To merge \(n \) elements total, do two smaller merges of possibly different sizes
 – But worst-case split is \((1/4)n \) and \((3/4)n \)
 • When subarrays same size and “smaller” splits “all” / “none”
Analysis continued

For just a parallel merge of \(n \) elements:
- Work is \(T(n) = T(3n/4) + T(n/4) + O(\log n) \) which is \(O(n) \)
- Span is \(T(n) = T(3n/4) + O(\log n) \), which is \(O(\log^2 n) \)
- (neither bound is immediately obvious, but “trust me”)

So for mergesort with parallel merge overall:
- Work is \(T(n) = 2T(n/2) + O(n) \), which is \(O(n \log n) \)
- Span is \(T(n) = 1T(n/2) + O(\log^2 n) \), which is \(O(\log^3 n) \)

So parallelism (work / span) is \(O(n / \log^2 n) \)
 - Not quite as good as quicksort’s \(O(n / \log n) \)
 - But worst-case guarantee
 - And as always this is just the asymptotic result