CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Dan Grossman
Spring 2012
Announcements

Project 1 posted
 – Section materials on Eclipse will be very useful if you have never used it
 – (Could also start in a different environment if necessary)
 – Section materials on generics will be very useful for Phase B

Homework 1 posted

Feedback on typos is welcome
 – Won’t announce every minor fix to posted materials

Section tomorrow
Today

• Finish discussing queues

• Review math essential to algorithm analysis
 – Proof by induction
 – Powers of 2
 – Exponents and logarithms

• Begin analyzing algorithms
 – Using asymptotic analysis (continue next time)
Mathematical induction

Suppose $P(n)$ is some predicate (mentioning integer n)
- Example: $n \geq n/2 + 1$

To prove $P(n)$ for all integers $n \geq c$, it suffices to prove
1. $P(c)$ – called the “basis” or “base case”
2. If $P(k)$ then $P(k+1)$ – called the “induction step” or “inductive case”

Why we will care:

To show an algorithm is correct or has a certain running time
no matter how big a data structure or input value is
(Our “n” will be the data structure or input size.)
Example

\[P(n) = \text{“the sum of the first } n \text{ powers of 2 (starting at 0) is } 2^{n-1} \text{”} \]

Theorem: \(P(n) \) holds for all \(n \geq 1 \)

Proof: By induction on \(n \)

• Base case: \(n=1 \). Sum of first 1 power of 2 is \(2^0 \), which equals 1. And for \(n=1 \), \(2^n-1 \) equals 1.

• Inductive case:
 – Assume the sum of the first \(k \) powers of 2 is \(2^k-1 \)
 – Show the sum of the first \((k+1)\) powers of 2 is \(2^{k+1}-1 \)

Using assumption, sum of the first \((k+1)\) powers of 2 is

\[
(2^k-1) + 2^{(k+1)-1} = (2^k-1) + 2^k = 2^{k+1}-1
\]
Powers of 2

- A bit is 0 or 1
- A sequence of n bits can represent 2^n distinct things
 - For example, the numbers 0 through 2^n-1
- 2^{10} is 1024 (“about a thousand”, kilo in CSE speak)
- 2^{20} is “about a million”, mega in CSE speak
- 2^{30} is “about a billion”, giga in CSE speak

Java: an `int` is 32 bits and signed, so “max int” is “about 2 billion”
 a `long` is 64 bits and signed, so “max long” is $2^{63}-1$
Therefore…

Could give a unique id to…

• Every person in the U.S. with 29 bits
• Every person in the world with 33 bits
• Every person to have ever lived with 38 bits (estimate)
• Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?
Logarithms and Exponents

- Since so much is binary in CS \log almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = "a little under 20"$
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Logarithms and Exponents

• Since so much is binary \log in CS almost always means \log_2
• Definition: $\log_2 x = y$ if $x = 2^y$
• So, $\log_2 1,000,000 =$ “a little under 20”
• Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Logarithms and Exponents

- Since so much is binary \log in CS almost always means \log_2
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, $\log_2 1,000,000 = \text{“a little under 20”}$
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Logarithms and Exponents

- Since so much is binary \(\log \) in CS almost always means \(\log_2 \)
- Definition: \(\log_2 x = y \) if \(x = 2^y \)
- So, \(\log_2 1,000,000 = \) “a little under 20”
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Properties of logarithms

• $\log(A*B) = \log A + \log B$
 – So $\log(N^k) = k \log N$

• $\log(A/B) = \log A - \log B$

• $\log(\log x)$ is written $\log \log x$
 – Grows as slowly as 2^y grows fast

• $(\log x)(\log x)$ is written $\log^2 x$
 – It is greater than $\log x$ for all $x > 2$
Log base doesn’t matter much!

“Any base B log is equivalent to base 2 log within a constant factor”
- And we are about to stop worrying about constant factors!
- In particular, $\log_2 x = 3.22 \log_{10} x$
- In general,
 $$\log_B x = \frac{\log_A x}{\log_A B}$$
Algorithm Analysis

As the “size” of an algorithm’s input grows (integer, length of array, size of queue, etc.):

– How much longer does the algorithm take (time)
– How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only “which curve we are like”

Separate issue: Algorithm correctness – does it produce the right answer for all inputs
– Usually more important, naturally
Example

• What does this pseudocode return?

  ```plaintext
  x := 0;
  for i=1 to N do
    for j=1 to i do
      x := x + 3;
    return x;
  ```

 • Correctness: For any \(N \geq 0 \), it returns...
Example

• What does this pseudocode return?
 \[
 \begin{align*}
 &x := 0; \\
 &\text{for } i=1 \text{ to } N \text{ do} \\
 &\quad \text{for } j=1 \text{ to } i \text{ do} \\
 &\quad\quad x := x + 3; \\
 &\text{return } x;
 \end{align*}
 \]

• Correctness: For any \(N \geq 0 \), it returns \(3N(N+1)/2 \)

• Proof: By induction on \(n \)
 – \(P(n) = \) after outer for-loop executes \(n \) times, \(x \) holds \(3n(n+1)/2 \)
 – Base: \(n=0 \), returns 0
 – Inductive: From \(P(k) \), \(x \) holds \(3k(k+1)/2 \) after \(k \) iterations. Next iteration adds \(3(k+1) \), for total of \(3k(k+1)/2 + 3(k+1) = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2 \)
Example

• How long does this pseudocode run?

  ```plaintext
  x := 0;
  for i=1 to N do
      for j=1 to i do
          x := x + 3;
  return x;
  ```

• Running time: For any \(N \geq 0 \),
 – Assignments, additions, returns take “1 unit time”
 – Loops take the sum of the time for their iterations

• So: \(2 + 2 \times (\text{number of times inner loop runs}) \)
 – And how many times is that…
Example

• How long does this pseudocode run?

  ```
  x := 0;
  for i=1 to N do
    for j=1 to i do
      x := x + 3;
  return x;
  ```

• The total number of loop iterations is N*(N+1)/2
 – This is a very common loop structure, worth memorizing
 – Proof is by induction on N, known for centuries
 – This is proportional to N^2, and we say $O(N^2)$, “big-Oh of”
 • For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 • See plot… N*(N+1)/2 vs. just N^2/2
Lower-order terms don’t matter

$N^*(N+1)/2$ vs. just $N^2/2$
Geometric interpretation

\[\sum_{i=1}^{N} i = \frac{N^2}{2} + \frac{N}{2} \]

for \(i=1 \) to \(N \) do
 for \(j=1 \) to \(i \) do
 \(/ / \text{ small work} \)

- Area of square: \(N^2 \)
- Area of lower triangle of square: \(\frac{N^2}{2} \)
- Extra area from squares crossing the diagonal: \(\frac{N}{2} \)
- As \(N \) grows, fraction of “extra area” compared to lower triangle goes to zero (becomes insignificant)
Recurrence Equations

• For running time, what the loops did was irrelevant, it was how many times they executed.

• Running time as a function of input size n (here loop bound):
 \[T(n) = n + T(n-1) \]
 (and $T(0) = 2$ish, but usually implicit that $T(0)$ is some constant)

• Any algorithm with running time described by this formula is $O(n^2)$

• “Big-Oh” notation also ignores the constant factor on the high-order term, so $3N^2$ and $17N^2$ and $(1/1000) N^2$ are all $O(N^2)$
 – As N grows large enough, no smaller term matters
 – Next time: Many more examples + formal definitions
Big-O: Common Names

$O(1)$ constant (same as $O(k)$ for constant k)

$O(\log n)$ logarithmic

$O(n)$ linear

$O(n \log n)$ “$n \log n$”

$O(n^2)$ quadratic

$O(n^3)$ cubic

$O(n^k)$ polynomial (where k is any constant)

$O(k^n)$ exponential (where k is any constant > 1)

Pet peeve: “exponential” does not mean “grows really fast”, it means “grows at rate proportional to k^n for some $k>1$”

– A savings account accrues interest exponentially ($k=1.01$?)
– If you don’t know k, you probably don’t know it’s exponential