
CSE332: Data Abstractions

Lecture 1: Introduction; ADTs; Stacks/Queues

Dan Grossman
Spring 2012

Welcome!

We have 10 weeks to learn fundamental data structures and
algorithms for organizing and processing information
– “Classic” data structures / algorithms and how to analyze

rigorously their efficiency and when to use them
– Queues, dictionaries, graphs, sorting, etc.
– Parallelism and concurrency (!)

Today in class:
• Course mechanics
• What this course is about

– And how it fits into the CSE curriculum
• Start (finish?) ADTs, stacks, and queues

– Largely review

Spring 2012 2 CSE332: Data Abstractions

Concise to-do list

In next 24-48 hours:
• Adjust class email-list settings
• Email homework 0 (worth 0 points) to me
• Read all course policies
• Read/skim Chapters 1 and 3 of Weiss book

– Relevant to Project 1, due next week
– Will start Chapter 2 on Wednesday

Possibly:
• Set up your Eclipse / Java environment for Project 1

– Thursday’s section will help

http://www.cs.washington.edu/education/courses/cse332/12sp/

Spring 2012 3 CSE332: Data Abstractions

Course staff
 Dan Grossman Tyler Robison Stanley Wang

Spring 2012 4 CSE332: Data Abstractions

Dan: Faculty, “341 guy”, loves 332 too, did parallelism/concurrency part
Tyler: Grad student, TAed 332 many times, taught it Summer 2010
Stanley: Took 332 last quarter

Office hours, email, etc. on course web-page

Communication

• Course email list: cse332a_sp12@u
– Students and staff already subscribed
– You must get announcements sent there
– Fairly low traffic

• Course staff: cse332-staff@cs plus individual emails

• Discussion board
– For appropriate discussions; TAs will monitor
– Optional, won’t use for important announcements

• Anonymous feedback link
– For good and bad: if you don’t tell me, I don’t know

Spring 2012 5 CSE332: Data Abstractions

Course meetings

• Lecture (Dan)
– Materials posted (sometimes afterwards), but take notes
– Ask questions, focus on key ideas (rarely coding details)

• Section (Tyler)
– Often focus on software (Java features, tools, project issues)
– Reinforce key issues from lecture
– Answer homework questions, etc.
– An important part of the course (not optional)

• Office hours
– Use them: please visit me
– Ideally not just for homework questions (but that’s great too)

Spring 2012 6 CSE332: Data Abstractions

Course materials

• All lecture and section materials will be posted
– But they are visual aids, not always a complete description!
– If you have to miss, find out what you missed

• Textbook: Weiss 3rd Edition in Java
– Good read, but only responsible for lecture/section/hw topics
– Will assign homework problems from it
– 3rd edition improves on 2nd, but we’ll support the 2nd

• Core Java book: A good Java reference (there may be others)
– Don’t struggle Googling for features you don’t understand
– Same book recommended for CSE331

• Parallelism / concurrency units in separate free resources
designed for 332

Spring 2012 7 CSE332: Data Abstractions

Course Work
• 8 written/typed homeworks (25%)

– Due at beginning of class each Friday (not this week)
– No late homeworks accepted
– Often covers through Monday before it’s due

• 3 programming projects (with phases) (25%)
– First phase of Project 1 due in 9 days
– Use Java and Eclipse (see this week’s section)
– One 24-hour late-day for the quarter
– Projects 2 and 3 will allow partners
– Most of the grade is code design and write-up questions

• Midterm Friday April 27 (20%)

• Final Tuesday June 5 (25%)
Spring 2012 8 CSE332: Data Abstractions

Collaboration and Academic Integrity

• Read the course policy very carefully
– Explains quite clearly how you can and cannot get/provide

help on homework and projects

• Always explain any unconventional action on your part
– When it happens, when you submit, not when asked

• I have promoted and enforced academic integrity since I was a

freshman
– I offer great trust but with little sympathy for violations
– Honest work is the most important feature of a university

Spring 2012 9 CSE332: Data Abstractions

Unsolicited advice

• Get to class on time!
– Instructor pet peeve (I will start and end promptly)
– First 2 minutes are much more important than last 2!
– April 27 will prove beyond any doubt you are capable

• Learn this stuff

– You need it for so many later classes/jobs anyway
– Falling behind only makes more work for you

• Have fun

– So much easier to be motivated and learn

Spring 2012 10 CSE332: Data Abstractions

Today in Class

• Course mechanics: Did I forget anything?

• What this course is about
– And how it fits into the CSE curriculum

• Start (finish?) ADTs, stacks, and queues

– Largely review

Spring 2012 11 CSE332: Data Abstractions

Data Structures + Threads

• About 70% of the course is a “classic data-structures course”
– Timeless, essential stuff
– Core data structures and algorithms that underlie most software
– How to analyze algorithms

• Plus a serious first treatment of programming with multiple threads
– For parallelism: Use multiple processors to finish sooner
– For concurrency: Correct access to shared resources
– Will make many connections to the classic material

Spring 2012 12 CSE332: Data Abstractions

Where 332 fits

Spring 2012 13 CSE332: Data Abstractions

• Also the most common pre-req among 400-level courses
– And essential stuff for many internships

312
Foundations

II

332
Data

Abstractions

311
Foundations

I

351
Hw/Sw

Interface

352
Hw Design /

Impl

EE205
Signal

Conditioning
(or EE215)

344
Data

Management

341
Programming

Languages

STAT391

331
Sw Design /

Impl

333
Systems

Programming

390A
Tools

required

CS required

CompE required

not required

pre-req

co-req or pre-req

What is 332 is about

• Deeply understand the basic structures used in all software
– Understand the data structures and their trade-offs
– Rigorously analyze the algorithms that use them (math!)
– Learn how to pick “the right thing for the job”

• Experience the purposes and headaches of multithreading

• Practice design, analysis, and implementation

– The elegant interplay of “theory” and “engineering” at the
core of computer science

Spring 2012 14 CSE332: Data Abstractions

Goals

• Be able to make good design choices as a developer, project
manager, etc.
– Reason in terms of the general abstractions that come up in

all non-trivial software (and many non-software) systems
• Be able to justify and communicate your design decisions

Dan’s take:
 3 years from now this course will seem like it was a waste of

your time because you can’t imagine not “just knowing” every
main concept in it
– Key abstractions computer scientists and engineers use

almost every day
– A big piece of what separates us from others

Spring 2012 15 CSE332: Data Abstractions

Data structures

(Often highly non-obvious) ways to organize information to enable
efficient computation over that information

– Key goal over the next week is introducing asymptotic
analysis to precisely and generally describe efficient use of
time and space

A data structure supports certain operations, each with a:
– Meaning: what does the operation do/return
– Performance: how efficient is the operation

Examples:
– List with operations insert and delete
– Stack with operations push and pop

Spring 2012 16 CSE332: Data Abstractions

Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:

– Time vs. space
– One operation more efficient if another less efficient
– Generality vs. simplicity vs. performance

That is why there are many data structures and educated CSEers

internalize their main trade-offs and techniques
– And recognize logarithmic < linear < quadratic < exponential

Spring 2012 17 CSE332: Data Abstractions

Terminology

• Abstract Data Type (ADT)
– Mathematical description of a “thing” with set of operations

• Algorithm
– A high level, language-independent description of a step-by-

step process

• Data structure
– A specific family of algorithms for implementing an ADT

• Implementation of a data structure
– A specific implementation in a specific language

Spring 2012 18 CSE332: Data Abstractions

Example: Stacks

• The Stack ADT supports operations:
– isEmpty: have there been same number of pops as pushes
– push: takes an item
– pop: raises an error if isEmpty, else returns most-recently

pushed item not yet returned by a pop
– … (possibly more operations)

• A Stack data structure could use a linked-list or an array or

something else, and associated algorithms for the operations

• One implementation is in the library java.util.Stack

Spring 2012 19 CSE332: Data Abstractions

Why useful

The Stack ADT is a useful abstraction because:
• It arises all the time in programming (e.g., see Weiss 3.6.3)

– Recursive function calls
– Balancing symbols (parentheses)
– Evaluating postfix notation: 3 4 + 5 *
– Clever: Infix ((3+4) * 5) to postfix conversion (see text)

• We can code up a reusable library

• We can communicate in high-level terms

– “Use a stack and push numbers, popping for operators…”
– Rather than, “create a linked list and add a node when…”

Spring 2012 20 CSE332: Data Abstractions

The Queue ADT

• Operations
 create
 destroy
 enqueue
 dequeue
 is_empty

• Just like a stack except:

– Stack: LIFO (last-in-first-out)
– Queue: FIFO (first-in-first-out)

• Just as useful and ubiquitous

Spring 2012 21 CSE332: Data Abstractions

F E D C B enqueue dequeue G A

Circular Array Queue Data Structure

Spring 2012 22 CSE332: Data Abstractions

// Basic idea only!
enqueue(x) {
 Q[back] = x;
 back = (back + 1) % size
}
// Basic idea only!
dequeue() {
 x = Q[front];
 front = (front + 1) % size;
 return x;
}

b c d e f
Q: 0 size - 1

front back

• What if queue is empty?
– Enqueue?
– Dequeue?

• What if array is full?
• How to test for empty?
• What is the complexity of

the operations?
• Can you find the kth

element in the queue?

Linked List Queue Data Structure

Spring 2012 23 CSE332: Data Abstractions

b c d e f

front back

// Basic idea only!
enqueue(x) {
 back.next = new Node(x);
 back = back.next;
}
// Basic idea only!
dequeue() {
 x = front.item;
 front = front.next;
 return x;
}

• What if queue is empty?
– Enqueue?
– Dequeue?

• Can list be full?
• How to test for empty?
• What is the complexity of

the operations?
• Can you find the kth

element in the queue?

Circular Array vs. Linked List

Array:
– May waste unneeded space

or run out of space
– Space per element excellent
– Operations very simple / fast
– Constant-time access to kth

element

– For operation insertAtPosition,
must shift all later elements
– Not in Queue ADT

Spring 2012 24 CSE332: Data Abstractions

This is something every trained computer scientist knows in his/her
sleep – it’s like knowing how to do arithmetic

List:
– Always just enough space
– But more space per element
– Operations very simple / fast
– No constant-time access to kth

element

– For operation insertAtPosition
must traverse all earlier elements
– Not in Queue ADT

The Stack ADT

Operations:
 create
 destroy
 push
 pop
 top
 is_empty

Can also be implemented with an array or a linked list

– This is Project 1!
– Like queues, type of elements is irrelevant

• Ideal for Java’s generic types (section and Project 1B)

Spring 2012 25 CSE332: Data Abstractions

A

B
C
D
E
F

E D C B A

F

