Outline

Done:
• How to use fork and join to write a parallel algorithm
• Why using divide-and-conquer with lots of small tasks is best
 – Combines results in parallel
• Some Java and ForkJoin Framework specifics
 – More pragmatics (e.g., installation) in separate notes

Now:
• More examples of simple parallel programs
• Arrays & balanced trees support parallelism better than linked lists
• Asymptotic analysis for fork-join parallelism
• Amdahl’s Law

Examples

• Maximum or minimum element
• Is there an element satisfying some property (e.g., is there a 17)?
• Left-most element satisfying some property (e.g., first 17)
 – What should the recursive tasks return?
 – How should we merge the results?
• Corners of a rectangle containing all points (a “bounding box”)
• Counts, for example, number of strings that start with a vowel
 – This is just summing with a different base case
 – Many problems are!

Reductions

• Computations of this form are called reductions (or reduces?)
• Produce single answer from collection via an associative operator
 – Examples: max, count, leftmost, rightmost, sum, product, …
 – Non-examples: median, subtraction, exponentiation
• (Recursive) results don’t have to be single numbers or strings.
 They can be arrays or objects with multiple fields.
 – Example: Histogram of test results is a variant of sum
• But some things are inherently sequential
 – How we process arr[i] may depend entirely on the result of
 processing arr[i-1]

Even easier: Maps (Data Parallelism)

• A map operates on each element of a collection independently to
 create a new collection of the same size
 – No combining results
 – For arrays, this is so trivial some hardware has direct support
• Canonical example: Vector addition

```java
int[] vector_add(int[] arr1, int[] arr2){
  assert (arr1.length == arr2.length);
  result = new int[arr1.length];
  FORALL(i=0; i < arr1.length; i++) {
    result[i] = arr1[i] + arr2[i];
  }
  return result;
}
```
Maps in ForkJoin Framework

```java
class VecAdd extends RecursiveAction {
    int lo; int hi; int[] res; int[] arr1; int[] arr2;
    VecAdd(int l, int h, int[] r, int[] a1, int[] a2) { ... }
    protected void compute() {
        if (hi - lo < SEQUENTIAL_CUTOFF) {
            for (int i = lo; i < hi; i++)
                res[i] = arr1[i] + arr2[i];
        } else {
            int mid = (hi + lo) / 2;
            VecAdd left = new VecAdd(lo, mid, res, arr1, arr2);
            VecAdd right = new VecAdd(mid, hi, res, arr1, arr2);
            left.fork();
            right.compute();
            left.join();
        }
    }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2) {
    assert (arr1.length == arr2.length);
    int[] ans = new int[arr1.length];
    fjPool.invoke(new VecAdd(0, arr1.length, ans, arr1, arr2);
    return ans;
}
```

Maps and reductions

Maps and reductions: the “workhorses” of parallel programming
- By far the two most important and common patterns
 - Two more-advanced patterns in next lecture
- Learn to recognize when an algorithm can be written in terms of maps and reductions
- Use maps and reductions to describe (parallel) algorithms
- Programming them becomes “trivial” with a little practice
 - Exactly like sequential for-loops seem second-nature

Digression: MapReduce on clusters

- You may have heard of Google’s “map/reduce”
 - Or the open-source version Hadoop
- Idea: Perform maps/reduces on data using many machines
 - The system takes care of distributing the data and managing fault tolerance
 - You just write code to map one element and reduce elements to a combined result
- Separates how to do recursive divide-and-conquer from what computation to perform
 - Old idea in higher-order functional programming transferred to large-scale distributed computing
 - Complementary approach to declarative queries for databases

Trees

- Maps and reductions work just fine on balanced trees
 - Divide-and-conquer each child rather than array subranges
 - Correct for unbalanced trees, but won’t get much speed-up
- Example: minimum element in an unsorted but balanced binary tree in $O(\log n)$ time given enough processors
- How to do the sequential cut-off?
 - Store number-of-descendants at each node (easy to maintain)
 - Or could approximate it with, e.g., AVL-tree height

Linked lists

- Can you parallelize maps or reduces over linked lists?
 - Example: Increment all elements of a linked list
 - Example: Sum all elements of a linked list
 - Parallelism still beneficial for expensive per-element operations
- Once again, data structures matter!
- For parallelism, balanced trees generally better than lists so that we can get to all the data exponentially faster $O(\log n)$ vs. $O(n)$
 - Trees have the same flexibility as lists compared to arrays

Analyzing algorithms

- Like all algorithms, parallel algorithms should be:
 - Correct
 - Efficient
- For our algorithms so far, correctness is “obvious” so we’ll focus on efficiency
 - Want asymptotic bounds
 - Want to analyze the algorithm without regard to a specific number of processors
 - The key ‘magic’ of the ForkJoin Framework is getting expected run-time performance asymptotically optimal for the available number of processors
 - So we can analyze algorithms assuming this guarantee
Work and Span

Let T_p be the running time if there are P processors available.

Two key measures of run-time:

- **Work**: How long it would take 1 processor = T_1
 - Just “sequentialize” the recursive forking

- **Span**: How long it would take infinity processors = T_∞
 - The longest dependence-chain
 - Example: $O(\log n)$ for summing an array
 - Notice having $n/2$ processors is no additional help
 - Also called “critical path length” or “computational depth”

The DAG

A program execution using `fork` and `join` can be seen as a DAG

- Nodes: Pieces of work
- Edges: Source must finish before destination starts

- A `fork` “ends a node” and makes two outgoing edges
 - New thread
 - Continuation of current thread

- A `join` “ends a node” and makes a node with two incoming edges
 - Node just ended
 - Last node of thread joined on

Our simple examples

- `fork` and `join` are very flexible, but divide-and-conquer maps and reductions use them in a very basic way:
 - A tree on top of an upside-down tree

More interesting DAGs?

- The DAGs are not always this simple

- Example:
 - Suppose combining two results might be expensive enough that we want to parallelize each one
 - Then each node in the inverted tree on the previous slide would itself expand into another set of nodes for that parallel computation

Connecting to performance

- Recall: T_p = running time if there are P processors available

- Work = T_1 = sum of run-time of all nodes in the DAG
 - That lonely processor does everything
 - Any topological sort is a legal execution
 - $O(n)$ for simple maps and reductions

- Span = T_∞ = sum of run-time of all nodes on the most-expensive path in the DAG
 - Note: costs are on the nodes not the edges
 - Our infinite army can do everything that is ready to be done, but still has to wait for earlier results
 - $O(\log n)$ for simple maps and reductions

Definitions

A couple more terms:

- **Speed-up** on P processors: T_1 / T_p

- If speed-up is P, we call it perfect linear speed-up
 - Perfect linear speed-up means doubling P halves running time
 - Usually our goal; hard to get in practice

- **Parallelism** is the maximum possible speed-up: T_1 / T_∞
 - At some point, adding processors won’t help
 - What that point is depends on the span
 - Parallel algorithms is about decreasing span without increasing work too much
Optimal T_P: Thanks ForkJoin library!

- So we know T_1 and T_∞ but we want T_P (e.g., $P=4$)
- Ignoring memory-hierarchy issues (caching), T_P can’t beat
 - T_1 / P why not?
 - T_∞ why not?
- So an asymptotically optimal execution would be:
 $$T_P = O\left((T_1 / P) + T_\infty\right)$$
 - First term dominates for small P, second for large P
- The ForkJoin Framework gives an expected-time guarantee of asymptotically optimal!
 - Expected time because it flips coins when scheduling
 - How? For an advanced course (few need to know)
 - Guarantee requires a few assumptions about your code...

Division of responsibility

- Our job as ForkJoin Framework users:
 - Pick a good algorithm, write a program
 - When run, program creates a DAG of things to do
 - Make all the nodes a small-ish and approximately equal amount of work
- The framework-writer’s job:
 - Assign work to available processors to avoid idling
 - Let framework-user ignore all scheduling issues
 - Keep constant factors low
 - Give the expected-time optimal guarantee assuming framework-user did his/her job
 $$T_P = O\left((T_1 / P) + T_\infty\right)$$

Examples

$$T_P = O\left((T_1 / P) + T_\infty\right)$$

- In the algorithms seen so far (e.g., sum an array):
 - $T_1 = O(n)$
 - $T_\infty = O(\log n)$
 - So expect (ignoring overheads): $T_P = O(n/P + \log n)$

- Suppose instead:
 - $T_1 = O(n^2)$
 - $T_\infty = O(n)$
 - So expect (ignoring overheads): $T_P = O(n^2/P + n)$

Amdahl’s Law (mostly bad news)

- So far: analyze parallel programs in terms of work and span
 - In practice, typically have parts of programs that parallelize well...
 - Such as maps/reductions over arrays and trees
 - ...and parts that don’t parallelize at all
 - Such as reading a linked list, getting input, doing computations where each needs the previous step, etc.

 “Nine women can’t make a baby in one month”

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time
Let S be the portion of the execution that can’t be parallelized
Then:
$$T_1 = S + (1-S) = 1$$
Suppose we get perfect linear speedup on the parallel portion
Then:
$$T_P = S + (1-S)/P$$
So the overall speedup with P processors is (Amdahl’s Law):
$$T_1 / T_P = 1 / (S + (1-S)/P)$$
And the parallelism (infinite processors) is:
$$T_1 / T_\infty = 1 / S$$

Why such bad news

$$T_1 / T_P = 1 / (S + (1-S)/P) \quad T_1 / T_\infty = 1 / S$$

- Suppose 33% of a program’s execution is sequential
 - Then a billion processors won’t give a speedup over 3
- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 - Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 - For 256 processors to get at least 100x speedup, we need
 $$100 \leq 1 / (S + (1-S)/256)$$
 Which means $S \leq 0.0061$ (i.e., 99.4% perfectly parallelizable)
Plots you have to see

1. Assume 256 processors
 - x-axis: sequential portion S, ranging from .01 to .25
 - y-axis: speedup T_1 / T_P (will go down as S increases)

2. Assume $S = .01$ or $.1$ or $.25$ (three separate lines)
 - x-axis: number of processors P, ranging from 2 to 32
 - y-axis: speedup T_1 / T_P (will go up as P increases)

*Do this as a homework problem!
- Chance to use a spreadsheet or other graphing program
- Compare against your intuition
- A picture is worth 1000 words, especially if you made it

All is not lost

Amdahl's Law is a bummer!
- Unparallelized parts become a bottleneck very quickly
- But it doesn't mean additional processors are worthless

- We can find new parallel algorithms
 - Some things that seem sequential are actually parallelizable

- We can change the problem or do new things
 - Example: Video games use tons of parallel processors
 - They are not rendering 10-year-old graphics faster
 - They are rendering more beautiful(?) monsters

Moore and Amdahl

- Moore's “Law” is an observation about the progress of the semiconductor industry
 - Transistor density doubles roughly every 18 months

- Amdahl’s Law is a mathematical theorem
 - Diminishing returns of adding more processors

- Both are incredibly important in designing computer systems