Changing a major assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming – everything part of one sequence

Removing this assumption creates major challenges & opportunities

– Programming: Divide work among threads of execution and coordinate (synchronize) among them
– Algorithms: How can parallel activity provide speed-up (more throughput: work done per unit time)
– Data structures: May need to support concurrent access (multiple threads operating on data at the same time)

A simplified view of history

Writing correct and efficient multithreaded code is often much more
difficult than for single-threaded (i.e., sequential) code

– Especially in common languages like Java and C
– So typically stay sequential if possible

From roughly 1980-2005, desktop computers got exponentially
closer at running sequential programs

– About twice as fast every couple years

But nobody knows how to continue this

– Increasing clock rate generates too much heat
– Relative cost of memory access is too high
– But we can keep making “wires exponentially smaller” (Moore’s “Law”), so put multiple processors on the same chip (“multicore”)

What to do with multiple processors?

• Next computer you buy will likely have 4 processors
 – Wait a few years and it will be 8, 16, 32, …
 – The chip companies have decided to do this (not a “law”)

• What can you do with them?
 – Run multiple totally different programs at the same time
 • Already do that? Yes, but with time-slicing
 – Do multiple things at once in one program
 • Our focus – more difficult
 • Requires rethinking everything from asymptotic complexity to how to implement data-structure operations

Parallelism vs. Concurrency

Note: Terms not yet standard but the perspective is essential

– Many programmers confuse these concepts

Parallelism:

Use extra resources to solve a problem faster

Concurrency:

Correctly and efficiently manage access to shared resources

There is some connection:

– Common to use threads for both
– If parallel computations need access to shared resources, then the concurrency needs to be managed

An analogy

CS1 idea: A program is like a recipe for a cook
 – One cook who does one thing at a time! (Sequential)

Parallelism:

– Have lots of potatoes to slice?
 – Hire helpers, hand out potatoes and knives
 – But too many chefs and you spend all your time coordinating

Concurrency:

– Lots of cooks making different things, but only 4 stove burners
 – Want to allow access to all 4 burners, but not cause spills or incorrect burner settings
Parallelism Example

Parallelism: Use extra computational resources to solve a problem faster (increasing throughput via simultaneous execution)

Pseudocode for array sum
- Bad style for reasons we'll see, but may get roughly 4x speedup

```java
int sum(int[] arr){
  res = new int[4];
  len = arr.length;
  FORALL(i=0; i < 4; i++){ //parallel iterations
    res[i] = sumRange(arr,i*len/4,(i+1)*len/4);
  }
}
int sumRange(int[] arr, int lo, int hi) {
  result = 0;
  for(j=lo; j < hi; j++)
    result += arr[j];
  return result;
}
```

Concurrency Example

Concurrency: Correctly and efficiently manage access to shared resources (from multiple possibly-simultaneous clients)

Pseudocode for a shared chaining hashtable
- Prevent bad interleavings (correctness)
- But allow some concurrent access (performance)

```java
class Hashtable<K,V> {
  …
  void insert(K key, V value) {
    int bucket = …;
    prevent-other-inserts/lookups in table[bucket]
    do the insertion
    re-enable access to table[bucket]
  }
  V lookup(K key) {
    (similar to insert, but can allow concurrent lookups to same bucket)
  }
}
```

Shared memory

The model we will assume is shared memory with explicit threads

Old story: A running program has
- One program counter (current statement executing)
- One call stack (with each stack frame holding local variables)
- Objects in the heap created by memory allocation (i.e., new)
 - (nothing to do with data structure called a heap)
- Static fields

New story:
- A set of threads, each with its own program counter & call stack
 - No access to another thread’s local variables
- Threads can (implicitly) share static fields / objects
 - To communicate, write somewhere another thread reads

Our Needs

To write a shared-memory parallel program, need new primitives from a programming language or library

- Ways to create and run multiple things at once
 - Let’s call these things threads
- Ways for threads to share memory
 - Often just threads with references to the same objects
- Ways for threads to coordinate (a.k.a. synchronize)
 - For now, a way for one thread to wait for another to finish
 - Other primitives when we study concurrency

Other models

We will focus on shared memory, but you should know several other models exist and have their own advantages

- Message-passing: Each thread has its own collection of objects. Communication is via explicitly sending/receiving messages
 - Cooks working in separate kitchens, mail around ingredients
- Dataflow: Programmers write programs in terms of a DAG. A node executes after all of its predecessors in the graph
 - Cooks wait to be handed results of previous steps
- Data parallelism: Have primitives for things like “apply function to every element of an array in parallel”
Java basics

First learn some basics built into Java via `java.lang.Thread` – Then a better library for parallel programming

To get a new thread running:
1. Define a subclass `C` of `java.lang.Thread`, overriding `run`
2. Create an object of class `C`
3. Call that object’s `start` method
 • `start` sets off a new thread, using `run` as its “main”

What if we instead called the `run` method of `C`?
– This would just be a normal method call, in the current thread

Let’s see how to share memory and coordinate via an example…

Parallelism idea

• Example: Sum elements of a large array
• Idea: Have 4 threads simultaneously sum 1/4 of the array
 – Warning: This is an inferior first approach

```
ans0 + ans1 + ans2 + ans3 = ans
```

– Create 4 thread objects, each given a portion of the work
– Call `start()` on each thread object to actually run it in parallel
– `Wait` for threads to finish using `join()`
– Add together their 4 answers for the final result

First attempt, part 1

```java
class SumThread extends java.lang.Thread {
    int lo; // arguments
    int hi;
    int[] arr;
    int ans = 0; // result

    SumThread(int[] a, int l, int h) { lo=l; hi=h; arr=a; }

    public void run() { //override must have this type
        for(int i=lo; i < hi; i++)
            ans += arr[i];
    }
}
```

Because we must override a no-arguments/no-result `run`, we use fields to communicate across threads

First attempt, continued (wrong)

```java
class SumThread extends java.lang.Thread {
    int lo, int hi, int[] arr; // arguments
    int ans = 0; // result
    SumThread(int[] a, int l, int h) { … }
    public void run(){ … } // override
}
```

```java
int sum(int[] arr){ // can be a static method
    int len = arr.length;
    int ans = 0;
    SumThread[] ts = new SumThread[4];
    for(int i=0; i < 4; i++) // do parallel computations
        ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
    for(int i=0; i < 4; i++) // combine results
        ans += ts[i].ans;
    return ans;
}
```

Second attempt (still wrong)

```java
class SumThread extends java.lang.Thread {
    int lo, int hi, int[] arr; // arguments
    int ans = 0; // result
    SumThread(int[] a, int l, int h) { … }
    public void run(){ … } // override
}
```

```java
int sum(int[] arr){ // can be a static method
    int len = arr.length;
    int ans = 0;
    SumThread[] ts = new SumThread[4];
    for(int i=0; i < 4; i++) // do parallel computations
        ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
    for(int i=0; i < 4; i++) // combine results
        ans += ts[i].ans;
    return ans;
}
```

Third attempt (correct in spirit)

```java
class SumThread extends java.lang.Thread {
    int lo, int hi, int[] arr; // arguments
    int ans = 0; // result
    SumThread(int[] a, int l, int h) { … }
    public void run(){ … } // override
}
```

```java
int sum(int[] arr){ // can be a static method
    int len = arr.length;
    int ans = 0;
    SumThread[] ts = new SumThread[4];
    for(int i=0; i < 4; i++) // do parallel computations
        ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
    for(int i=0; i < 4; i++) // combine results
        ans += ts[i].ans;
    return ans;
}
```
Join (not the most descriptive word)

• The Thread class defines various methods you could not implement on your own
 – For example: start, which calls run in a new thread
• The join method is valuable for coordinating this kind of computation
 – Caller blocks until/unless the receiver is done executing (meaning the call to run finishes)
 – Else we would have a race condition on ts[i].ans
• This style of parallel programming is called “fork/join”
• Java detail: code has 1 compile error because join may throw java.lang.InterruptedException
 – In basic parallel code, should be fine to catch-and-exit

Shared memory?

• Fork-join programs (thankfully) do not require much focus on sharing memory among threads
• But in languages like Java, there is memory being shared. In our example:
 – lo, hi, arr fields written by “main” thread, read by helper thread
 – ans field written by helper thread, read by “main” thread
• When using shared memory, you must avoid race conditions
 – While studying parallelism, we’ll stick with join
 – With concurrency, we will learn other ways to synchronize

A better approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms
 – “Forward-portable” as core count grows
 – So at the very least, parameterize by the number of threads

```java
int sum(int[] arr, int numTs){
    int ans = 0;
    SumThread[] ts = new SumThread[numTs];
    for(int i=0; i < numTs; i++){
        ts[i] = new SumThread(arr, (i*arr.length)/numTs,
                                (i+1)*arr.length)/numTs);
        ts[i].start();
    }
    for(int i=0; i < numTs; i++) {
        ts[i].join();
        ans += ts[i].ans;
    }
    return ans;
}
```

2. Want to use (only) processors “available to you now”
 – Not used by other programs or threads in your program
 • Maybe caller is also using parallelism
 • Available cores can change even while your threads run
 – If you have 3 processors available and using 3 threads would take time X, then creating 4 threads would take time 1.5X
 • Example: 12 units of work, 3 processors
 – Work divided into 3 parts will take 4 units of time
 – Work divided into 4 parts will take 3.2 units of time

```
// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
    ...
}
```

3. Though unlikely for sum, in general subproblems may take significantly different amounts of time
 – Example: Apply method f to every array element, but maybe f is much slower for some data items
 • Example: Is a large integer prime?
 – If we create 4 threads and all the slow data is processed by 1 of them, we won’t get nearly a 4x speedup
 • Example of a load imbalance

A Better Approach

The counterintuitive (?) solution to all these problems is to use lots of threads, far more than the number of processors
 – But this will require changing our algorithm
 – And for constant-factor reasons, abandoning Java’s threads

```
ans0        ans1          …         ansN
```

1. Forward-portable: Lots of helpers each doing a small piece
2. Processors available: Hand out “work chunks” as you go
 • If 3 processors available and have 100 threads, then ignoring constant-factor overheads, extra time is < 3%
3. Load imbalance: No problem if slow thread scheduled early enough
 • Variation probably small anyway if pieces of work are small
Naïve algorithm is poor

Suppose we create 1 thread to process every 1000 elements

```java
int sum(int[] arr){
    int numThreads = arr.length / 1000;
    SumThread[] ts = new SumThread[numThreads];
    ...
}
```

Then combining results will have `arr.length / 1000` additions
- Linear in size of array (with constant factor 1/1000)
- Previous we had only 4 pieces (constant in size of array)

In the extreme, if we create 1 thread for every 1 element, the loop to combine results has length-of-array iterations
- Just like the original sequential algorithm

A better idea

This is straightforward to implement using divide-and-conquer
- Parallelism for the recursive calls

```java
class SumThread extends java.lang.Thread {
    int lo; int hi; int[] arr; // arguments
    int ans = 0; // result
    public void run(){ // override
        if(hi - lo < SEQUENTIAL_CUTOFF)
            for(int i=lo; i < hi; i++)
                ans += arr[i];
        else {
            SumThread left = new SumThread(arr,lo,(hi+lo)/2);
            SumThread right = new SumThread(arr,(hi+lo)/2,hi);
            left.start();
            right.start();
            left.join(); // don't move this up a line - why?
            right.join();
            ans = left.ans + right.ans;
        }
    }

    int sum(int[] arr){
        SumThread t = new SumThread(arr,0,arr.length);
        t.run();
        return t.ans;
    }
}
```

Divide-and-conquer to the rescue!

Divide-and-conquer really works
- The key is divide-and-conquer parallelizes the result-combining
 - If you have enough processors, total time is height of the tree: $O(\log n)$ (optimal, exponentially faster than sequential $O(n)$)
 - Next lecture: study reality of $P << n$ processors
- Will write all our parallel algorithms in this style
 - But using a special library engineered for this style
 - Takes care of scheduling the computation well
 - Often relies on operations being associative (like +)

Being realistic
- In theory, you can divide down to single elements, do all your result-combining in parallel and get optimal speedup
 - Total time $O(n/\text{numProcessors} + \log n)$
- In practice, creating all those threads and communicating swamps the savings, so:
 - Use a **sequential cutoff**, typically around 500-1000
 - Eliminates almost all the recursive thread creation (bottom levels of tree)
 - Exactly like quicksort switching to insertion sort for small subproblems, but more important here
 - Do not create two recursive threads; create one and do the other “yourself”
 - Cuts the number of threads created by another 2x

Half the threads
- If a language had built-in support for fork-join parallelism, we would expect this hand-optimization to be unnecessary
- But the library we are using expects you to do it yourself
 - And the difference is surprisingly substantial
- Again, no difference in theory
Fewer threads pictorially

That library, finally

- Even with all this care, Java’s threads are too “heavyweight”
 - Constant factors, especially space overhead
 - Creating 20,000 Java threads just a bad idea 😞
- The ForkJoin Framework is designed to meet the needs of divide-and-conquer fork-join parallelism
 - In the Java 7 standard libraries
 - (Also available for Java 6 as a downloaded .jar file)
 - Section will focus on pragmatics/logistics
 - Similar libraries available for other languages
 - C/C++: Cilk (inventors), Intel’s Thread Building Blocks
 - C#: Task Parallel Library
 - ...
 - Library’s implementation is a fascinating but advanced topic

Different terms, same basic idea

To use the ForkJoin Framework:
- A little standard set-up code (e.g., create a ForkJoinPool)
 - Don’t subclass **Thread**
 - Don’t override **run**
 - Don’t use an **ans** field
 - Don’t call **start**
 - Don’t just call **join**
 - Don’t have a topmost call to **run**
 - Do subclass **RecursiveTask<V>**
 - Do override **compute**
 - Do return a **V** from **compute**
 - Do call **fork**
 - Do call **join** which returns answer
 - Do call **compute** to hand-optimize
 - Do not use an **ans** field
 - Do return a **V** from **compute**
 - Do call **fork**

Don’t call **run** to hand-optimize
- Do call **compute** to hand-optimize
- Don’t have a topmost call to **run**
- Do create a pool and call **invoke**

Example: final version (missing imports)

```java
class SumArray extends RecursiveTask<Integer> {
    int lo; int hi; int[] arr; // arguments
    SumArray(int[] a, int l, int h) { … }
    protected Integer compute(){// return answer
        if(hi – lo < SEQUENTIAL_CUTOFF) {
            int ans = 0;
            for(int i=lo; i < hi; i++)
                ans += arr[i];
            return ans;
        } else {
            SumArray left = new SumArray(arr,lo,(hi+lo)/2);
            SumArray right= new SumArray(arr,(hi+lo)/2,hi);
            left.fork();
            int rightAns = right.compute();
            int leftAns  = left.join();
            return leftAns + rightAns;
        }
    }
}
```

```java
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
    return fjPool.invoke(new SumArray(arr,0,arr.length));
}
```

Getting good results in practice

- Sequential threshold
 - Library documentation recommends doing approximately 100-5000 basic operations in each “piece” of your algorithm
- Library needs to “warm up”
 - May see slow results before the Java virtual machine re-optimizes the library internals
 - Put your computations in a loop to see the “long-term benefit”
- Wait until your computer has more processors 😊
 - Seriously, overhead may dominate at 4 processors, but parallel programming is likely to become much more important
- Beware memory-hierarchy issues
 - Won’t focus on this, but often crucial for parallel performance