Single source shortest paths

- Done: BFS to find the minimum path length from v to u in $O(|E|+|V|)$
- Actually, can find the minimum path length from v to every node
 - Still $O(|E|+|V|)$
 - No faster way for a “distinguished” destination in the worst-case
- Now: Weighted graphs
 Given a weighted graph and node v,
 find the minimum-cost path from v to every node
- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
- Annoying when this happens with costs of flights

We will assume there are no negative weights
- Problem is ill-defined if there are negative-cost cycles
- Today’s algorithm is wrong if edges can be negative
 - See homework

Dijkstra’s Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the “founders” of computer science; this is just one of his many contributions
 - Many people have a favorite Dijkstra story, even if they never met him
 - My favorite quotation: “computer science is no more about computers than astronomy is about telescopes”
- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a “best distance so far”
 - A priority queue will turn out to be useful for efficiency

Dijkstra’s Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the “cloud” of known vertices
 - Update distances for nodes with edges from v
- That’s it! (But we need to prove it produces correct answers)

The Algorithm

1. For each node v, set v.cost = ∞ and v.known = false
2. Set source.cost = 0
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known
 c) For each edge (v,u) with weight w,
 \[c1 = v.cost + w // cost of best path through v to u \]
 \[c2 = u.cost // cost of best path to u previously known \]
 if(c1 < c2) { // if the path through v is better
 u.cost = c1
 u.path = v // for computing actual paths
 }

- Spring 2012 2 CSE332: Data Abstractions
- Spring 2012 3 CSE332: Data Abstractions
- Spring 2012 4 CSE332: Data Abstractions
- Spring 2012 5 CSE332: Data Abstractions
- Spring 2012 6 CSE332: Data Abstractions
Important features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Example #1

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>≤ 2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>≤ 1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>≤ 4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>

Order Added to Known Set:
A

Example #1

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>≤ 4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>

Order Added to Known Set:
A, C, B

Example #1

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>≤ 4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>

Order Added to Known Set:
A, C, B, D
Features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers

- While a vertex is still not known, another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important
 - A detail about how the algorithm works (client doesn’t care)
 - Not used by the algorithm (implementation doesn’t care)
 - It is sorted by path-cost, resolving ties in some way

Interpreting the Results

- Now that we’re done, how do we get the path from, say, A to E?
Stopping Short

- How would this have worked differently if we were only interested in:
 - The path from A to G?
 - The path from A to E?

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>

Order Added to Known Set:
A, C, B, D, F, H, G, E

Example #2

Order Added to Known Set:
A, D, C, E
Example #2

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3 E</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2 A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2 D</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4 C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 6 D</td>
<td></td>
</tr>
</tbody>
</table>

Order Added to Known Set:
A, D, C, E, B

Example #2

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3 E</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2 A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2 D</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4 C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 6 D</td>
<td></td>
</tr>
</tbody>
</table>

Order Added to Known Set:
A, D, C, E, B, F

Example #3

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3 E</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2 A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2 D</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4 C</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>6 D</td>
<td></td>
</tr>
</tbody>
</table>

Order Added to Known Set:
A, D, C, E, B, F, G

Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra’s algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges

- An example of a greedy algorithm:
 - At each step, irrevocably does what seems best at that step
 - A locally optimal step, not necessarily globally optimal
 - Once a vertex is known, it is not revisited
 - Turns out to be globally optimal
Where are We?

- What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

- All the “known” vertices have the correct shortest path
 - True initially: shortest path to start node has cost 0
 - If it stays true every time we mark a node “known”, then by induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a shorter path later!

- This holds only because Dijkstra’s algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction…

Correctness: The Cloud (Rough Sketch)

Suppose \(v \) is the next node to be marked known (“added to the cloud”)

- The best-known path to \(v \) must have only nodes “in the cloud”
 - Else we would have picked a node closer to the cloud than \(v \)
- Suppose the actual shortest path to \(v \) is different
 - It won’t use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let \(w \) be the first non-cloud node on this path. The part of the path up to \(w \) is already known and must be shorter than the best-known path to \(v \). So \(v \) would not have been picked. Contradiction.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

Improving asymptotic running time

- So far: \(O(V^2) \)
- We had a similar “problem” with topological sort being \(O(V^2) \) due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges

- Solution?
Improving (?) asymptotic running time

- So far: $O(|V|^2)$
- We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decreaseKey operation
 - Must maintain a reference from each node to its current position in the priority queue
 - Conceptually simple, but can be a pain to code up

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```java
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
      if(!a.known)
        if(b.cost + weight((b,a)) < a.cost){
          decreaseKey(a,"new cost – old cost")
          a.path = b
        }
  }
}
```

Dense vs. sparse again

- First approach: $O(|V|^2)$
- Second approach: $O(|V|\log |V|+|E|\log |V|)$
- So which is better?
 - Sparse: $O(|V|\log |V|+|E|\log |V|)$ (if $|E| > |V|$, then $O(|E|\log |V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for “normal graphs”, we might call decreaseKey rarely (or not percolate far), making $|E|\log |V|$ more like $|E|$..

What comes next?

In the logical course progression, we would next study

1. All-pairs-shortest paths
2. Minimum spanning trees

But to align lectures with projects and homeworks, instead we will
- Start parallelism and concurrency
- Come back to graphs at the end of the course
 - We might skip (1) except to point out where to learn more

Note toward the future:
- We cannot do all of graphs last because of the CSE312 co-requisite (needed for study of NP)