CSE332: Data Abstractions
Lecture 16: Topological Sort / Graph Traversals
Dan Grossman
Spring 2012

Topological Sort

Problem: Given a DAG $G = (V, E)$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it.

Example input:

Example output:

142, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352

Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer

- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
 - Graph with 5 topological orders:

- What DAGs have exactly 1 answer?
 - Lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to finish your degree
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, using a dependency graph to find an order of execution
- …

A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v, u) in E), decrement the in-degree of u

Example

Output:

Node: 142 143 311 312 331 332 333 341 351 352 440 352
Removed?
In-degree: 0 1 1 2 1 1 2 1 1 2 1
Example

Output: 142 143 311 331 332 333 341 351 352 440

Node: 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree: 0 1 1 2 1 1 2 1 1 2 1
0 0 1 0 0 1 0 0 1 0 0

Spring 2012
CSE332: Data Abstractions
13

Example

Output: 142 143 311 331 332 333 341 351 352 440

Node: 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree: 0 1 1 2 1 1 2 1 1 2 1
0 0 1 0 0 1 0 0 1 0 0

Spring 2012
CSE332: Data Abstractions
14

Example

Output: 142 143 311 331 332 333 341 351 352 440

Node: 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree: 0 1 1 2 1 1 2 1 1 2 1
0 0 1 0 0 1 0 0 1 0 0

Spring 2012
CSE332: Data Abstractions
15

Example

Output: 142 143 311 331 332 333 341 351 352 440

Node: 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree: 0 1 1 2 1 1 2 1 1 2 1
0 0 1 0 0 1 0 0 1 0 0

Spring 2012
CSE332: Data Abstractions
16

Running time?

labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v
 w.indegree--;
}

• What is the worst-case running time?
 – Initialization O(|V|+|E|) (assuming adjacency list)
 – Sum of all find-new-vertex O(|V|^2) (because each O(|V|))
 – Sum of all decrements O(|E|) (assuming adjacency list)
 – So total is O(|V|^2) – not good for a sparse graph!

Spring 2012
CSE332: Data Abstractions
17

Doing better

The trick is to avoid searching for a zero-degree node every time!
 – Keep the “pending” zero-degree nodes in a list, stack,
 queue, bag, table, or something
 – Order we process them affects output but not correctness or
 efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) v = dequeue()
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e., u such that (v,u) in E),
 decrement the in-degree of u, if new degree is 0, enqueue it

Spring 2012
CSE332: Data Abstractions
18
Running time?

```java
labelAllAndEnqueueZeros();
for (ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if (w.indegree==0) enqueue(v);
    }
}
```

• What is the worst-case running time?
 – Initialization: O(|V|+|E|) (assuming adjacency list)
 – Sum of all enqueues and dequeues: O(|V|)
 – Sum of all decrements: O(|E|) (assuming adjacency list)
 – So total is O(|E| + |V|) – much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable from v (i.e., there exists a path)
 – Possibly “do something” for each node
 – Examples: print to output, set a field, return from iterator, etc.

Related problems:
• Is an undirected graph connected?
• Is a directed graph weakly / strongly connected?
 – For strongly, need a cycle back to starting node

Basic idea:
 – Keep following nodes
 – But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Running Time and Options

• Assuming add and remove are O(1), entire traversal is O(|E|)
 – Use an adjacency list representation

• The order we traverse depends entirely on add and remove
 – Popular choice: a stack “depth-first graph search” “DFS”
 – Popular choice: a queue “breadth-first graph search” “BFS”

• DFS and BFS are “big ideas” in computer science
 – Depth: recursively explore one part before going back to the other parts not yet explored
 – Breadth: explore areas closer to the start node first

Example: trees

• A tree is a graph and DFS and BFS are particularly easy to “see”

```java
def DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if (u is not marked) {
            mark u
            pending.add(u)
        }
}
```

• A, B, D, E, C, F, G, H
• Exactly what we called a “pre-order traversal” for trees
 – The marking is because we support arbitrary graphs and we want to process each node exactly once
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```java
DFS2(Node start) {
    initialize stack s to hold start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

- A, C, F, H, G, B, E, D
- A different but perfectly fine traversal

Comparison

- Breadth-first always finds shortest paths, i.e., “optimal solutions”
 - Better for “what is the shortest path from x to y”
- But depth-first can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d
 then DFS stack never has more than d*p elements
 - But a queue for BFS may hold O(|V|) nodes
- A third approach:
 - *Iterative deepening (IDFS)*:
 - Try DFS but disallow recursion more than K levels deep
 - If that fails, increment K and start the entire search over
 - Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
 - “Is there a path from node x to node y?”
- But what if we want to actually output the path?
 - Like getting driving directions rather than just knowing it’s possible to get there!
- Easy:
 - Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

```
Example using BFS
```