Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept

- A graph is a pair
 \(G = (V, E) \)
 - A set of vertices, also known as nodes
 \(V = \{v_1, v_2, \ldots, v_n\} \)
 - A set of edges
 \(E = \{e_1, e_2, \ldots, e_m\} \)
 - Each edge \(e_i \) is a pair of vertices \((v_j, v_k) \)
 - An edge “connects” the vertices

- Graphs can be directed or undirected

An ADT?

- Can think of graphs as an ADT with operations like
 \(\text{isEdge}(v_j, v_k) \)
- But it is unclear what the “standard operations” are
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of standard terminology about graphs

Some Graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
 - …

Wow: Using the same algorithms for problems across so many domains sounds like “core computer science and engineering”

Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always “two-way”

 - Thus, \((u, v) \in E \) implies \((v, u) \in E \)
 - Only one of these edges needs to be in the set
 - The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction

 - Thus, \((u, v) \in E \) does not imply \((v, u) \in E \)
 - Let \((u, v) \in E \) mean \(u \rightarrow v \)
 - Call \(u \) the source and \(v \) the destination
- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source
Self-Edges, Connectedness

- A self-edge a.k.a. a loop is an edge of the form (u, u)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected
 - Even if every node has non-zero degree

More Notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

Examples again

Which would use directed edges? Which would have self-edges?
Which would be connected? Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many do not

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Paths and Cycles

- A **path** is a list of vertices \([v_0,v_1,...,v_n]\) such that \((v_i,v_{i+1}) \in E\) for all \(0 \leq i < n\). Say "a path from \(v_0\) to \(v_n\)."

- A **cycle** is a path that begins and ends at the same node \((v_0==v_n)\)

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- **Path length**: Number of edges in a path
- **Path cost**: Sum of weights of edges in a path

Example where

\[P=\text{[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]}\]

- **length(P) = 5**
- **cost(P) = 11.5**

Simple Paths and Cycles

- A **simple path** repeats no vertices, except the first might be the last
 - [Seattle, Salt Lake City, San Francisco, Dallas]
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

- Recall, a **cycle** is a path that ends where it begins
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 - [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A **simple cycle** is a cycle and a simple path
 - [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No

Undirected-Graph Connectivity

- An undirected graph is **connected** if for all pairs of vertices \(u, v\), there exists a path from \(u\) to \(v\)

- An undirected graph is **complete**, a.k.a. fully connected if for all pairs of vertices \(u, v\), there exists an edge from \(u\) to \(v\) plus self edges

Example:

- Connected graph
- Disconnected graph

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No
Directed-Graph Connectivity

- A directed graph is strongly connected if there is a path from every vertex to every other vertex.
- A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges.
- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex plus self edges.

Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Trees as Graphs

When talking about graphs, we say a tree is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees.

How does this relate to the trees we know and love?

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges are directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently and with undirected edges

Directed Acyclic Graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree
- Every DAG is a directed graph
- But not every directed graph is a DAG
Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- ...

Density / Sparsity

- Recall: In an undirected graph, $0 \leq |E| < |V|^2$
- Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
- So for any graph, $O(|E| + |V|^2)$ is $O(|V|^2)$
- Another fact: If an undirected graph is connected, then $|V|-1 \leq |E|
- Because $|E|$ is often much smaller than its maximum size, we do not always approximate $|E|$ as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., $|E| = \Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means "lots of edges"
 - If $|E|$ is $O(|V|)$ we say the graph is sparse
 - More sloppily, sparse means "most possible edges missing"

What is the Data Structure?

- So graphs are really useful for lots of data and questions
 - For example, "what's the lowest-cost path from x to y"
- But we need a data structure that represents graphs
- The "best one" can depend on:
 - Properties of the graph (e.g., dense versus sparse)
 - The common queries (e.g., "is (u,v) an edge?" versus "what are the neighbors of node u?"
- So we'll discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each node a number from 0 to $|V|-1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v]$ being true means there is an edge from u to v

Adjacency Matrix Properties

- Running time to:
 - Get a vertex's out-edges: $O(|V|)$
 - Get a vertex's in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$
- Space requirements:
 - $|V|^2$ bits
- Best for sparse or dense graphs?
Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?
 – Undirected will be symmetric about diagonal axis

• How can we adapt the representation for weighted graphs?
 – Instead of a Boolean, store a number in each cell
 – Need some value to represent ‘not an edge’
 • In some situations, 0 or -1 works

Adjacency List

• Assign each node a number from 0 to |V| - 1
• An array of length |V| in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

• Running time to:
 – Get all of a vertex’s out-edges: \(O(d)\) where \(d\) is out-degree of vertex
 – Get all of a vertex’s in-edges: \(O(|E|)\) (but could keep a second adjacency list for this!)
 – Decide if some edge exists: \(O(d)\) where \(d\) is out-degree of source
 – Insert an edge: \(O(1)\) (unless you need to check if it’s there)
 – Delete an edge: \(O(d)\) where \(d\) is out-degree of source
• Space requirements:
 – \(O(|V| + |E|)\)
• Best for dense or sparse graphs?
 – Best for sparse graphs, so usually just stick with linked lists

Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs
• Matrix: Can save roughly 2x space
 – But may slow down operations in languages with “proper” 2D arrays (not Java, which has only arrays of arrays)
 – How would you “get all neighbors”?
• Lists: Each edge in two lists to support efficient “get all neighbors”

Example:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

- **Shortest paths**: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path