The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Simple algorithms: \(O(n^2) \)
Fancier algorithms: \(O(n \log n) \)
Comparison lower bound: \(\Omega(n \log n) \)
Specialized algorithms: \(O(n) \)
Handling huge data sets

How Fast Can We Sort?

- Heap sort & Merge sort have \(O(n \log n) \) worst-case running time
- Quick sort has \(O(n \log n) \) average-case running time
- These bounds are all tight, actually \(\Theta(n \log n) \)
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as \(O(n) \) or \(O(n \log \log n) \)
 - Instead: prove that this is impossible
 - **Assuming our comparison model**: The only operation an algorithm can perform on data items is a 2-element comparison

A General View of Sorting

- Assume we have \(n \) elements to sort
 - For simplicity, assume none are equal (no duplicates)
- How many permutations of the elements (possible orderings)?
- Example, \(n=3 \)

 \[
 \]
- In general, \(n \) choices for least element, \(n-1 \) for next, \(n-2 \) for next, …
 - \(n(n-1)(n-2)...(2)(1) = n! \) possible orderings

Counting Comparisons

- So every sorting algorithm has to “find” the right answer among the \(n! \) possible answers
 - Starts “knowing nothing” and gains information with each comparison
 - Intuition: Each comparison can at best eliminate half the remaining possibilities
 - Must narrow answer down to a single possibility
- What we will show:
 - Any sorting algorithm must do at least \((1/2)n \log_2 n = (1/2)n \) \(\Omega(n \log n) \) comparisons
 - Otherwise there are at least two permutations among the \(n! \) possible that cannot yet be distinguished, so the algorithm would have to guess and could be wrong
One Decision Tree for \(n = 3 \)

- The leaves contain all the possible orderings of \(a, b, c \)
- A different algorithm would lead to a different tree

What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
 - (No duplicate elements)
 - (Would have 1 outcome if a comparison is redundant)

- Because any data is possible, any algorithm needs to ask enough questions to produce all \(n! \) answers
 - Each answer is a different leaf
 - So the tree must be big enough to have \(n! \) leaves
 - Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with \(n! \) leaves
 - So no algorithm can have worst-case running time better than the height of a tree with \(n! \) leaves

- Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with \(n! \) leaves
 - Turns out average-case is same asymptotically
 - A comparison sort could be worse than this height, but it cannot be better

- Now: a binary tree with \(n! \) leaves has height \(\Omega(n \log n) \)
 - Factorial function grows very quickly
 - Height could be more, but cannot be less

- Conclusion: Comparison sorting is \(\Omega(n \log n) \)
 - An amazing computer-science result: proves all the clever programming in the world cannot sort in linear time

Lower bound on height

- The height of a binary tree with \(L \) leaves is at least \(\log_2 L \)
- So the height of our decision tree, \(h \):

\[
\begin{align*}
h &\geq \log_2 (n!) \\
&= \log_2 n^*(n^*(n-1)^*(n-2)\ldots(2)(1)) \\
&= \log_2 n + \log_2 (n-1) + \ldots + \log_2 1 \\
&= \log_2 n + \log_2(n-1) + \ldots + \log_2(n/2) \\
&= \log_2(n/2) + \log_2(n/2) + \ldots + \log_2(n/2) \\
&= \log_2(n/2) + \log_2(n/2) + \ldots + \log_2(n/2) \\
&= \log_2(n/2) + \ldots + \log_2(n/2) \\
&= \log_2 \left(\frac{n}{2} \right) + \ldots + \log_2 \left(\frac{n}{2} \right) \\
&= (n/2) \log_2 \left(\frac{n}{2} \right) + \ldots + (n/2) \log_2 \left(\frac{n}{2} \right) \\
&= (n/2) \log_2 n - \log_2 2 \\
&= (1/2) n \log_2 n - (1/2) n \\
&= \Omega(n \log n)
\end{align*}
\]

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

- Simple algorithms: \(O(n^2) \)
- Fancier algorithms: \(O(n \log n) \)
- Comparison lower bound: \(\Omega(n \log n) \)
- Specialized algorithms: \(O(n) \)
- Handling huge data sets

- Bucket sort
- Radix sort
- External sorting

huh???

- Change the model – assume more than items can be compared!
BucketSort (a.k.a. BinSort)
- If all values to be sorted are known to be integers between 1 and K (or any small range)
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3</td>
</tr>
<tr>
<td>2 1</td>
</tr>
<tr>
<td>3 2</td>
</tr>
<tr>
<td>4 2</td>
</tr>
<tr>
<td>5 3</td>
</tr>
</tbody>
</table>

Analyzing Bucket Sort
- Overall: $O(n+K)$
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
 - Do not spend time doing comparisons of duplicates
- Bad when K is much larger than n
 - Wasted space; wasted time during final linear $O(K)$ pass
- For data in addition to integer keys, use list at each bucket

Radix sort
- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit
 - Keeping sort stable
 - Invariant: After k passes (digits), the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

Example
Radix = 10
First pass: bucket sort by ones digit
Order now: 721 3 143 537 67 478 38 9

Input: 478 537 721 3 38 143 67

Second pass: stable bucket sort by tens digit
Order now: 3 9 721 537 143 478 38 67

Order was: 721

Third pass: stable bucket sort by 100s digit
Order now: 3 9 721

Order was: 143
Analysis

Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: $O(B+n)$
Total work is $O(P(B+n))$

Compared to comparison sorts, sometimes a win, but often not
- Example: Strings of English letters up to length 15
 - $15*(52 + n)$
 - This is less than $n \log n$ only if $n > 33,000$
 - Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties

Last Slide on Sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - Selection sort, Insertion sort (latter linear for mostly-sorted)
 - Good for “below a cut-off” to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - Heap sort, in-place but not stable nor parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place but not stable and $O(n^2)$ in worst-case
 - Often fastest, but depends on costs of comparisons/copies
- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!