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Hash Tables: Review

* Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some reasonable assumptions

+ A hash table is an array of some fixed size hash table
— But growable as we'll see 0
client hash table library

collision?  ollision

[ ) int mmmmss) (able-index Emmm——)

resolution

TableSize -1
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Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
— ldeas?
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Separate Chaining

0 / Chaining:

1 / All keys that map to the same
5 / table location are kept in a list
3 ; (a.k.a. a “chain” or “bucket”)
4 / As easy as it sounds

5 /

6 | / Example:

7 / insert 10, 22, 107, 12, 42

8 / with mod hashing

9 / and TableSize = 10
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Separate Chaining

—LJtoly Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
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~ |~~~ |~~~
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Separate Chaining

—LJtoly Chaining:
/ All keys that map to the same

i table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

O 00 N &N U A W N = O
~ |~~~

Example: Example:
107 /] insert 10, 22, 107, 12, 42 107 /] insert 10, 22, 107, 12, 42

/ with mod hashing / with mod hashing

/ and TableSize = 10 / and TableSize = 10
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Separate Chaining Thoughts on chaining

— ol Chaining: Worst time for £ind?

) All keys that map to the same orst-case time for £ind:

] table location are kept in a list
_.{42[ 12[ 22[ ! ‘ (a.k.a. a “chain” or “bucket”)

As easy as it sounds

O 00 N N W B WD = O
~ |~~~

Example:
07 /] insert 10, 22, 107, 12, 42
/ with mod hashing
/ and TableSize =10
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— Linear
— But only with really bad luck or bad hash function

— So not worth avoiding (e.g., with balanced trees at each
bucket)

» Beyond asymptotic complexity, some “data-structure
engineering” may be warranted

— Linked list vs. array vs. chunked list (lists should be short!)
— Move-to-front (cf. Project 2)

— Better idea: Leave room for 1 element (or 2?) in the table
itself, to optimize constant factors for the common case

* A time-space trade-off...
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Time vs. space (constant factors only here)
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More Rigorous Chaining Analysis
Definition: The load factor, 4, of a hash table is

_ N < number of elements
~ TableSize

Under chaining, the average number of elements per bucket is
So if some inserts are followed by random finds, then on average:

» Each unsuccessful £ind compares against items
» Each successful £ind compares against items
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More rigorous chaining analysis
Definition: The load factor, A, of a hash table is

_ N < number of elements
~ TableSize

Under chaining, the average number of elements per bucket is 4
So if some inserts are followed by random finds, then on average:
» Each unsuccessful £ind compares against A items

» Each successful £ind compares against 1/2 items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining
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Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. Iffull, 1 /

— try (h(key) + 2) % TableSize. Iffull, 2 /

— try (h(key) + 3) % TableSize. Iffull... 3 /

4 /

« Example: insert 38, 19, 8, 109, 10 5 /
6 /

7 /

8 38

9 /
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Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 8
— try (h(key) + 1) % TableSize. Iffull, 1 109
— try (h(key) + 2) % TableSize. Iffull, 2 /
— try (h(key) + 3) % TableSize. Iffull... 3 /
4 /
* Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 19

Spring 2012 CSE332: Data Abstractions

Alternative: Use empty space in the table

* Another simple idea: If h (key) is already full, 0 8
— try (h(key) + 1) % TableSize. Iffull, 1 109
— try (h(key) + 2) % TableSize. Iffull, 2 10
— try (h(key) + 3) % TableSize. Iffull... 3 /
4 /
« Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 19
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Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a
sequence of other positions in the table.

Trying the next spot is called probing
— We just did linear probing
« it probe was (h(key) + i) % TableSize

— In general have some probe function £ and use
h(key) + £(i) % TableSize

Open addressing does poorly with high load factor 4
— So want larger tables
— Too many probes means no more O(1)
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Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down ©)
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Other operations

insert finds an open table position using a probe function
What about £ind?
— Must use same probe function to “retrace the trail” for the data

— Unsuccessful search when reach empty position

What about delete?

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)
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Analysis of Linear Probing In a chart

» Trivial fact: For any A4 < 1, linear probing will find an empty slot
— ltis “safe” in this sense: no infinite loop unless table is full

* Non-trivial facts we won’t prove:
Average # of probes given A4 (in the limit as TableSize —w)

— Unsuccessful search: 1 1
J— +7
2( (1 —1)2]
— Successful search: 1 1
— 1+ S
20 (1-4)

» This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)
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Average i of Probes

» Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)
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* By comparison, chaining performance is linear in A and has no
trouble with 1>1
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Quadratic probing

*  We can avoid primary clustering by changing the probe function
(h(key) + £(i)) % TableSize

* A common technique is quadratic probing:
£(i) = i?
— So probe sequence is:
« O probe: h(key) % TableSize
* 1tprobe: (h(key) + 1) % TableSize
+ 2 probe: (h(key) + 4) % TableSize
* 34 probe: (h(key) + 9) % TableSize

« it probe: (h(key) + i2) % TableSize

* Intuition: Probes quickly “leave the neighborhood”
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Quadratic Probing Example

O 00 N AN W A WD = O

Spring 2012
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TableSize=10
Insert:

89

18

49

58

79
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Quadratic Probing Example

0 TableSize=10
1 Insert:
2 89
3 18
4 49
5 58
6 79
7
8
9 89
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Quadratic Probing Example

O 00 N AN L A W N = O

Spring 2012

89
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TableSize=10
Insert:

89

18

49

58

79
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Quadratic Probing Example

0 49 TableSize=10
1 Insert:

2 89

3 18

4 49

5 58

6 79

7

8 18

9 89
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Quadratic Probing Example

O 00 N AN W A WD = O

Spring 2012

49

58

89
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TableSize=10
Insert:

89

18

49

58

79
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Quadratic Probing Example

O 0 9 AN R WND = O

Spring 2012

49

58

79

18

89
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TableSize=10
Insert:

89

18

49

58

79
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Another Quadratic Probing Example

A N AW N =D

Spring 2012

TableSize =7

Insert:
76

40

48

5

55

47
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(76 % 7=6)
(40 % 7=5)
(48 % 7=6)
(5%7=5)
(55 % 7=16)
@7 %7=5)
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Another Quadratic Probing Example

A N R W N =D

Spring 2012

76

TableSize =7

Insert:

76 (76 % 7=06)
40 40% 7=5)
48 48 % 7=06)
5 (5%7=5)
55 (B35 % 7=06)
47 @7 % 7=5)
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Another Quadratic Probing Example

A N R W N =D

Spring 2012

40

76

TableSize =7

Insert:
76

40

48

5

55

47
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(76 % 7=6)
(40 % 7=5)
(48 % 7=6)
(5%7=5)
(55 % 7=16)
@7 %7=5)

Another Quadratic Probing Example

A N R W N =D

Spring 2012

48

40

76

TableSize =7

Insert:

76 (76 % 7=06)
40 40% 7=5)
48 48 % 7=06)
5 (5%7=5)
55 (55 % 7=06)
47 @7 % 7=5)
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Another Quadratic Probing Example

A N AW N =D

Spring 2012

48

40

76

TableSize =7

Insert:
76

40

48

5

55

47
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(76 % 7=6)
(40 % 7=5)
48 % 7=6)
(5%7=5)
(55 % 7=6)
@7 %7=5)
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Another Quadratic Probing Example

TableSize =7
0 48
1 Insert:
5 5 76 (76 % 7=6)
40 40 % 7=5)
3 LS 48 (48 % 7=6)
4 5 (5%7=5)
s | a0 55 (55 % 7=6)
o, =
p 6 47 @7%17=5)
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Another Quadratic Probing Example

TableSize =7
0 | 48
1 Insert:
5 e 76 (76 % 7 =6)
40 (40 % 7=5)
3 L5 48 (48 % 7=6)
4 5 (5%7=5)
s [ 20 55 (55 % 7=6)
0, -
I 47 47 % 7=5)

Doh!: Foralln, ((n*n) +5) % 7 is 0, 2, 5, or 6

» Excel shows takes “at least” 50 probes and a pattern

¢ Proof uses induction and (n2+5) % 7 ((n-7)2+5) % 7
e Infact, for all cand k, (n2+c) % k ((n-k)2+c) % k
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From Bad News to Good News

* Bad news:

— Quadratic probing can cycle through the same full indices,
never terminating despite table not being full

* Good news:
— If TableSize is prime and A < V%, then quadratic probing will
find an empty slot in at most TableSize/2 probes

— So: If you keep A < 2 and TableSize is prime, no need to
detect cycles

— Proofis posted in lecturell. txt
 Also, slightly less detailed proof in textbook
» Key fact: Forprime Tand 0 < i,j < T/2wherei # j,
(k + i2) $ T = (k + j2) % T (i.e., noindex repeat)

Clustering reconsidered

» Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

* Butit's no help if keys initially hash to the same index
— Called secondary clustering

» Can avoid secondary clustering with a probe function that
depends on the key: double hashing...
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Double hashing Double-hashing analysis
Idea: » Intuition: Because each probe is “jumping” by g (key) each

— Given two good hash functions h and g, it is very unlikely
that for some key, h(key) == g(key)

— So make the probe function £(i) = i*g(key)

Probe sequence:
« O probe: h(key) % TableSize
« 1stprobe: (h(key) + g(key)) $ TableSize
e 2 probe: (h(key) + 2*g(key)) % TableSize
« 39 probe: (h(key) + 3*g(key)) % TableSize

- ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g (key) cannot be 0
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time, we “leave the neighborhood” and “go different places from
other initial collisions”

» But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)

— Itis known that this cannot happen in at least one case:
*h(key) = key % p
*g(key) = q - (key % Qq)
e2<g<p
- p and q are prime
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More double-hashing facts

* Assume “uniform hashing”
— Means probability of g (keyl) % p == g(key2) % p is
1/p

* Non-trivial facts we won’t prove:
Average # of probes given 4 (in the limit as TableSize —w)

— Unsuccessful search (intuitive): 1
1-2

— Successful search (less intuitive): 4 1
Zloge(mj

* Bottom line: unsuccessful bad (but not as bad as linear probing),
but successful is not nearly as bad
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Charts

Uniform Hashing Uniform Hashing
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Where are we?

e Chaining is easy
- find, delete proportional to load factor on average
- insert can be constant if just push on front of list

* Open addressing uses probing, has clustering issues as table fills
— Why use it:
* Less memory allocation?
 Easier data representation?

* Now:
— Growing the table when it gets too full (“rehashing”)
— Relation between hashing/comparing and connection to Java
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Rehashing

Sp

As with array-based stacks/queues/lists, if table gets too full,
create a bigger table and copy everything

With chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

For open addressing, half-full is a good rule of thumb

New table size
— Twice-as-big is a good idea, except, uhm, that won'’t be prime!
— So go about twice-as-big

— Can have a list of prime numbers in your code since you won't
grow more than 20-30 times
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More on rehashing

»  What if we copy all data to the same indices in the new table?
— Will not work; we calculated the index based on TableSize

* Go through table, do standard insert for each into new table
— Run-time?
— O(n): lterate through old table

* Resize is an O(n) operation, involving n calls to the hash function
— |s there some way to avoid all those hash function calls?
— Space/time tradeoff: Could store h (key) with each data item
— Growing the table is still O(n); only helps by a constant factor
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Hashing and comparing

Spring 2012

Need to emphasize a critical detail:
— We initially hash E to get a table index
— While chaining or probing we compare to E
» Just need equality testing (i.e., “is it what | want”)

So a hash table needs a hash function and a comparator
— In Project 2, you will use two function objects

— The Java library uses a more object-oriented approach:
each object has an equals method and a hashCode method

class Object {
boolean equals (Object o) ({..}
int hashCode () {..}
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Equal Objects Must Hash the Same

* The Java library (and your project hash table) make a very
important assumption that clients must satisfy...

* Object-oriented way of saying it:
If a.equals (b), then we must require
a.hashCode () ==b.hashCode ()

» Function-object way of saying it:
If c.compare (a,b) == 0, then we must require
h.hash(a) == h.hash(b)

*  Why is this essential?
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Java bottom line

» Lots of Java libraries use hash tables, perhaps without your
knowledge

» So: If you ever override equals, you need to override
hashCode also in a consistent way

— See Coredava book, Chapter 5 for other “gotchas” with
equals
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Bad Example

» Think about using a hash table holding points

class PolarPoint {
double r = 0.0;
double theta = 0.0;
void addToAngle (double theta2) { theta+=theta2; }

boolean equals (Object otherObject) {
if (this==otherObject) return true;
if (otherObject==null) return false;
if (getClass () '=other.getClass()) return false;
PolarPoint other = (PolarPoint)otherObject;
double angleDiff =
(theta - other.theta) % (2*Math.PI);
double rDiff = r - other.r;
return Math.abs (angleDiff) < 0.0001
&& Math.abs (rDiff) < 0.0001;

// wrong: must override hashCode!
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By the way: comparison has rules too

We have not empahsized important “rules” about comparison for:
— All our dictionaries
— Sorting (next major topic)

Comparison must impose a consistent, total ordering:

Forall a, b, and ¢,
— If compare (a,b) < 0, then compare(b,a) > 0
— If compare (a,b) == 0, then compare (b,a) == 0
— If compare (a,b) < 0and compare(b,c) < O,
then compare(a,c) < 0
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Final word on hashing

* The hash table is one of the most important data structures
— Supports only £ind, insert, and delete efficiently

» Important to use a good hash function
« Important to keep hash table at a good size

*  What we skipped: Perfect hashing, universal hash functions,
hopscotch hashing, cuckoo hashing

« Side-comment: hash functions have uses beyond hash tables
— Examples: Cryptography, check-sums
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