
CSE332: Data Abstractions

Lecture 1: Introduction; ADTs; Stacks/Queues

Dan Grossman

Spring 2012

Welcome!

We have 10 weeks to learn fundamental data structures and

algorithms for organizing and processing information

– “Classic” data structures / algorithms and how to analyze

rigorously their efficiency and when to use them

– Queues, dictionaries, graphs, sorting, etc.

– Parallelism and concurrency (!)

Today in class:

• Course mechanics

• What this course is about

– And how it fits into the CSE curriculum

• Start (finish?) ADTs, stacks, and queues

– Largely review

Spring 2012 2 CSE332: Data Abstractions

Concise to-do list

In next 24-48 hours:

• Adjust class email-list settings

• Email homework 0 (worth 0 points) to me

• Read all course policies

• Read/skim Chapters 1 and 3 of Weiss book

– Relevant to Project 1, due next week

– Will start Chapter 2 on Wednesday

Possibly:

• Set up your Eclipse / Java environment for Project 1

– Thursday’s section will help

http://www.cs.washington.edu/education/courses/cse332/12sp/

Spring 2012 3 CSE332: Data Abstractions

Course staff

 Dan Grossman Tyler Robison Stanley Wang

Spring 2012 4 CSE332: Data Abstractions

Dan: Faculty, “341 guy”, loves 332 too, did parallelism/concurrency part

Tyler: Grad student, TAed 332 many times, taught it Summer 2010

Stanley: Took 332 last quarter

Office hours, email, etc. on course web-page

Communication

• Course email list: cse332a_sp12@u

– Students and staff already subscribed

– You must get announcements sent there

– Fairly low traffic

• Course staff: cse332-staff@cs plus individual emails

• Discussion board

– For appropriate discussions; TAs will monitor

– Optional, won’t use for important announcements

• Anonymous feedback link

– For good and bad: if you don’t tell me, I don’t know

Spring 2012 5 CSE332: Data Abstractions

Course meetings

• Lecture (Dan)

– Materials posted (sometimes afterwards), but take notes

– Ask questions, focus on key ideas (rarely coding details)

• Section (Tyler)

– Often focus on software (Java features, tools, project issues)

– Reinforce key issues from lecture

– Answer homework questions, etc.

– An important part of the course (not optional)

• Office hours

– Use them: please visit me

– Ideally not just for homework questions (but that’s great too)

Spring 2012 6 CSE332: Data Abstractions

Course materials

• All lecture and section materials will be posted

– But they are visual aids, not always a complete description!

– If you have to miss, find out what you missed

• Textbook: Weiss 3rd Edition in Java

– Good read, but only responsible for lecture/section/hw topics

– Will assign homework problems from it

– 3rd edition improves on 2nd, but we’ll support the 2nd

• Core Java book: A good Java reference (there may be others)

– Don’t struggle Googling for features you don’t understand

– Same book recommended for CSE331

• Parallelism / concurrency units in separate free resources

designed for 332

Spring 2012 7 CSE332: Data Abstractions

Course Work

• 8 written/typed homeworks (25%)

– Due at beginning of class each Friday (not this week)

– No late homeworks accepted

– Often covers through Monday before it’s due

• 3 programming projects (with phases) (25%)

– First phase of Project 1 due in 9 days

– Use Java and Eclipse (see this week’s section)

– One 24-hour late-day for the quarter

– Projects 2 and 3 will allow partners

– Most of the grade is code design and write-up questions

• Midterm Friday April 27 (20%)

• Final Tuesday June 5 (25%)

Spring 2012 8 CSE332: Data Abstractions

Collaboration and Academic Integrity

• Read the course policy very carefully

– Explains quite clearly how you can and cannot get/provide

help on homework and projects

• Always explain any unconventional action on your part

– When it happens, when you submit, not when asked

• I have promoted and enforced academic integrity since I was a

freshman

– I offer great trust but with little sympathy for violations

– Honest work is the most important feature of a university

Spring 2012 9 CSE332: Data Abstractions

Unsolicited advice

• Get to class on time!

– Instructor pet peeve (I will start and end promptly)

– First 2 minutes are much more important than last 2!

– April 27 will prove beyond any doubt you are capable

• Learn this stuff

– You need it for so many later classes/jobs anyway

– Falling behind only makes more work for you

• Have fun

– So much easier to be motivated and learn

Spring 2012 10 CSE332: Data Abstractions

Today in Class

• Course mechanics: Did I forget anything?

• What this course is about

– And how it fits into the CSE curriculum

• Start (finish?) ADTs, stacks, and queues

– Largely review

Spring 2012 11 CSE332: Data Abstractions

Data Structures + Threads

• About 70% of the course is a “classic data-structures course”

– Timeless, essential stuff

– Core data structures and algorithms that underlie most software

– How to analyze algorithms

• Plus a serious first treatment of programming with multiple threads

– For parallelism: Use multiple processors to finish sooner

– For concurrency: Correct access to shared resources

– Will make many connections to the classic material

Spring 2012 12 CSE332: Data Abstractions

Where 332 fits

Spring 2012 13 CSE332: Data Abstractions

• Also the most common pre-req among 400-level courses

– And essential stuff for many internships

312

Foundations

II

332

Data

Abstractions

311

Foundations

I

351

Hw/Sw

Interface

352

Hw Design /

Impl

EE205

Signal

Conditioning

(or EE215)

344

Data

Management

341

Programming

Languages

STAT391

331

Sw Design /

Impl

333

Systems

Programming

390A

Tools

required

CS required

CompE required

not required

pre-req

co-req or pre-req

What is 332 is about

• Deeply understand the basic structures used in all software

– Understand the data structures and their trade-offs

– Rigorously analyze the algorithms that use them (math!)

– Learn how to pick “the right thing for the job”

• Experience the purposes and headaches of multithreading

• Practice design, analysis, and implementation

– The elegant interplay of “theory” and “engineering” at the

core of computer science

Spring 2012 14 CSE332: Data Abstractions

Goals

• Be able to make good design choices as a developer, project

manager, etc.

– Reason in terms of the general abstractions that come up in

all non-trivial software (and many non-software) systems

• Be able to justify and communicate your design decisions

Dan’s take:

 3 years from now this course will seem like it was a waste of

your time because you can’t imagine not “just knowing” every

main concept in it

– Key abstractions computer scientists and engineers use

almost every day

– A big piece of what separates us from others

Spring 2012 15 CSE332: Data Abstractions

Data structures

(Often highly non-obvious) ways to organize information to enable

efficient computation over that information

– Key goal over the next week is introducing asymptotic

analysis to precisely and generally describe efficient use of

time and space

A data structure supports certain operations, each with a:

– Meaning: what does the operation do/return

– Performance: how efficient is the operation

Examples:

– List with operations insert and delete

– Stack with operations push and pop

Spring 2012 16 CSE332: Data Abstractions

Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:

– Time vs. space

– One operation more efficient if another less efficient

– Generality vs. simplicity vs. performance

That is why there are many data structures and educated CSEers

internalize their main trade-offs and techniques

– And recognize logarithmic < linear < quadratic < exponential

Spring 2012 17 CSE332: Data Abstractions

Terminology

• Abstract Data Type (ADT)

– Mathematical description of a “thing” with set of operations

• Algorithm

– A high level, language-independent description of a step-by-

step process

• Data structure

– A specific family of algorithms for implementing an ADT

• Implementation of a data structure

– A specific implementation in a specific language

Spring 2012 18 CSE332: Data Abstractions

Example: Stacks

• The Stack ADT supports operations:

– isEmpty: have there been same number of pops as pushes

– push: takes an item

– pop: raises an error if isEmpty, else returns most-recently

pushed item not yet returned by a pop

– … (possibly more operations)

• A Stack data structure could use a linked-list or an array or

something else, and associated algorithms for the operations

• One implementation is in the library java.util.Stack

Spring 2012 19 CSE332: Data Abstractions

Why useful

The Stack ADT is a useful abstraction because:

• It arises all the time in programming (e.g., see Weiss 3.6.3)

– Recursive function calls

– Balancing symbols (parentheses)

– Evaluating postfix notation: 3 4 + 5 *

– Clever: Infix ((3+4) * 5) to postfix conversion (see text)

• We can code up a reusable library

• We can communicate in high-level terms

– “Use a stack and push numbers, popping for operators…”

– Rather than, “create a linked list and add a node when…”

Spring 2012 20 CSE332: Data Abstractions

The Queue ADT

• Operations

 create

 destroy

 enqueue

 dequeue

 is_empty

• Just like a stack except:

– Stack: LIFO (last-in-first-out)

– Queue: FIFO (first-in-first-out)

• Just as useful and ubiquitous

Spring 2012 21 CSE332: Data Abstractions

F E D C B
enqueue dequeue

G A

Circular Array Queue Data Structure

Spring 2012 22 CSE332: Data Abstractions

// Basic idea only!

enqueue(x) {

 Q[back] = x;

 back = (back + 1) % size

}

// Basic idea only!

dequeue() {

 x = Q[front];

 front = (front + 1) % size;

 return x;

}

b c d e f

Q: 0 size - 1

front back

• What if queue is empty?

– Enqueue?

– Dequeue?

• What if array is full?

• How to test for empty?

• What is the complexity of

the operations?

• Can you find the kth

element in the queue?

Linked List Queue Data Structure

Spring 2012 23 CSE332: Data Abstractions

b c d e f

front back

// Basic idea only!

enqueue(x) {

 back.next = new Node(x);

 back = back.next;

}

// Basic idea only!

dequeue() {

 x = front.item;

 front = front.next;

 return x;

}

• What if queue is empty?

– Enqueue?

– Dequeue?

• Can list be full?

• How to test for empty?

• What is the complexity of

the operations?

• Can you find the kth

element in the queue?

Circular Array vs. Linked List

Array:

– May waste unneeded space

or run out of space

– Space per element excellent

– Operations very simple / fast

– Constant-time access to kth

element

– For operation insertAtPosition,

must shift all later elements

– Not in Queue ADT

Spring 2012 24 CSE332: Data Abstractions

This is something every trained computer scientist knows in his/her

sleep – it’s like knowing how to do arithmetic

List:

– Always just enough space

– But more space per element

– Operations very simple / fast

– No constant-time access to kth

element

– For operation insertAtPosition

must traverse all earlier elements

– Not in Queue ADT

The Stack ADT

Operations:

 create

 destroy

 push

 pop

 top

 is_empty

Can also be implemented with an array or a linked list

– This is Project 1!

– Like queues, type of elements is irrelevant

• Ideal for Java’s generic types (section and Project 1B)

Spring 2012 25 CSE332: Data Abstractions

A

B

C

D

E

F

E D C B A

F

