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Welcomel!

We have 10 weeks to learn fundamental data structures and
algorithms for organizing and processing information

— “Classic” data structures / algorithms and how to analyze
rigorously their efficiency and when to use them

— Queues, dictionaries, graphs, sorting, etc.
— Parallelism and concurrency (!)

Today In class:
» Course mechanics
« What this course is about
— And how it fits into the CSE curriculum
« Start (finish?) ADTs, stacks, and queues
— Largely review
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Concise to-do list

In next 24-48 hours:
* Adjust class email-list settings
 Emalil homework 0 (worth O points) to me
 Read all course policies
 Read/skim Chapters 1 and 3 of Weiss book
— Relevant to Project 1, due next week
— Will start Chapter 2 on Wednesday

Possibly:
« Set up your Eclipse / Java environment for Project 1
— Thursday’s section will help

http://www.cs.washington.edu/education/courses/cse332/12sp/
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Course staff

Dan Grossman Tyler Robison Stanley Wang

Dan: Faculty, “341 guy”, loves 332 too, did parallelism/concurrency part
Tyler: Grad student, TAed 332 many times, taught it Summer 2010
Stanley: Took 332 last quarter

Office hours, email, etc. on course web-page
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Communication

Course email list: cse332a_spl2@Qu

— Students and staff already subscribed

— You must get announcements sent there
— Fairly low traffic

Course staff: cse332-staffRcs plus individual emails

Discussion board
— For appropriate discussions; TAs will monitor
— Optional, won’t use for important announcements

Anonymous feedback link
— For good and bad: if you don't tell me, | don’t know
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Course meetings

* Lecture (Dan)
— Materials posted (sometimes afterwards), but take notes
— Ask guestions, focus on key ideas (rarely coding details)

« Section (Tyler)
— Often focus on software (Java features, tools, project issues)
— Reinforce key issues from lecture
— Answer homework questions, etc.
— An important part of the course (not optional)

« Office hours
— Use them: please visit me
— ldeally not just for homework questions (but that’s great too)
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Course materials

==w <+ All lecture and section materials will be posted
— But they are visual aids, not always a complete description!
— If you have to miss, find out what you missed

Textbook: Weiss 3" Edition in Java
— Good read, but only responsible for lecture/section/nw topics
— Will assign homework problems from it
— 3" edition improves on 2", but we’ll support the 2nd

Core Java book: A good Java reference (there may be others)
— Don't struggle Googling for features you don’t understand
— Same book recommended for CSE331

» Parallelism / concurrency units in separate free resources
- designed for 332
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Course Work

« 8 written/typed homeworks (25%)
— Due at beginning of class each Friday (not this week)
— No late homeworks accepted
— Often covers through Monday before it's due

« 3 programming projects (with phases) (25%)
— First phase of Project 1 due in 9 days
— Use Java and Eclipse (see this week’s section)
— One 24-hour late-day for the quarter
— Projects 2 and 3 will allow partners
— Most of the grade is code design and write-up questions

* Midterm Friday April 27 (20%)

* Final Tuesday June 5 (25%)
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Collaboration and Academic Integrity

 Read the course policy very carefully

— Explains quite clearly how you can and cannot get/provide
help on homework and projects

« Always explain any unconventional action on your part
— When it happens, when you submit, not when asked

* | have promoted and enforced academic integrity since | was a
freshman

— | offer great trust but with little sympathy for violations
— Honest work is the most important feature of a university
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Unsolicited advice

» Getto class on time!
— Instructor pet peeve (I will start and end promptly)
— First 2 minutes are much more important than last 2!
— April 27 will prove beyond any doubt you are capable

« Learn this stuff
— You need it for so many later classes/jobs anyway

— Falling behind only makes more work for you

« Have fun
— So much easier to be motivated and learn
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Today in Class

Course mechanics: Did | forget anything?

What this course is about
— And how it fits into the CSE curriculum

Start (finish?) ADTSs, stacks, and queues
— Largely review
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Data Structures + Threads

« About 70% of the course is a “classic data-structures course”
— Timeless, essential stuff
— Core data structures and algorithms that underlie most software
— How to analyze algorithms

» Plus a serious first treatment of programming with multiple threads
— For parallelism: Use multiple processors to finish sooner
— For concurrency: Correct access to shared resources
— Will make many connections to the classic material
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Where 332 fits

[ ] required
[Clcs required

[ ] CompE required
] not required

pre-req
" "p co-req or pre-req

Also the most common pre-req among 400-level courses

331
Sw Design /
Impl

311
Foundations
|

351
Hw/Sw
Interface

352
Hw Design /

— And essential stuff for many internships
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Foundations

Languages

333
Systems
Programming
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What is 332 Is about

« Deeply understand the basic structures used in all software
— Understand the data structures and their trade-offs
— Rigorously analyze the algorithms that use them (math!)
— Learn how to pick “the right thing for the job”

« EXxperience the purposes and headaches of multithreading

» Practice design, analysis, and implementation

— The elegant interplay of “theory” and “engineering” at the
core of computer science
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Goals

 Be able to make good design choices as a developer, project
manager, etc.

— Reason in terms of the general abstractions that come up in
all non-trivial software (and many non-software) systems

« Be able to justify and communicate your design decisions

Dan’s take:

3 years from now this course will seem like it was a waste of
your time because you can’t imagine not “just knowing” every
main concept in it

— Key abstractions computer scientists and engineers use
almost every day

— A big piece of what separates us from others
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Data structures

(Often highly non-obvious) ways to organize information to enable
efficient computation over that information

— Key goal over the next week is introducing asymptotic
analysis to precisely and generally describe efficient use of
time and space

A data structure supports certain operations, each with a:
— Meaning: what does the operation do/return
— Performance: how efficient is the operation

Examples:
— List with operations insert and delete

— Stack with operations push and pop
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Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:
— Time vs. space
— One operation more efficient if another less efficient
— Generality vs. simplicity vs. performance

That is why there are many data structures and educated CSEers
Internalize their main trade-offs and techniques

— And recognize logarithmic < linear < quadratic < exponential
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Terminology

Abstract Data Type (ADT)
— Mathematical description of a “thing” with set of operations

Algorithm

— A high level, language-independent description of a step-by-
step process

Data structure
— A specific family of algorithms for implementing an ADT

Implementation of a data structure
— A specific implementation in a specific language
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Example: Stacks

« The Stack ADT supports operations:
— isEmpty: have there been same number of pops as pushes
— push: takes an item

— pop: raises an error if ISEmpty, else returns most-recently
pushed item not yet returned by a pop

— ... (possibly more operations)

« A Stack data structure could use a linked-list or an array or
something else, and associated algorithms for the operations

* One implementation is in the library java.util.Stack

Spring 2012 CSE332: Data Abstractions 19



Why useful

The Stack ADT is a useful abstraction because:
* [tarises all the time in programming (e.g., see Weiss 3.6.3)
— Recursive function calls
— Balancing symbols (parentheses)
— Evaluating postfix notation: 34 +5*
— Clever: Infix ((3+4) * 5) to postfix conversion (see text)

« We can code up a reusable library
« We can communicate in high-level terms

— “Use a stack and push numbers, popping for operators...”
— Rather than, “create a linked list and add a node when...”
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The Queue ADT

« QOperations
create

destroy
enqueue
dequeue
is empty

G &, FEDCB

dequeue

« Just like a stack except:
— Stack: LIFO (last-in-first-out)
— Queue: FIFO (first-in-first-out)

» Just as useful and ubiquitous

Spring 2012

CSE332: Data Abstractions

21



Circular Array Queue Data Structure

Q:

0

size -1

bic|ld|e]|f

frontT ba(:kT

// Basic idea only!
enqueue (x) {
Q[back]

back
}

// Basic idea only!
dequeue () {
x = Q[front];

front

}

Spring 2012

(front + 1) % size;
return x;

(back + 1) % size
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What if queue is empty?
— Enqueue?
— Dequeue?
What if array is full?
How to test for empty?

What is the complexity of
the operations?

Can you find the kt
element in the queue?
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Linked List Queue Data Structure

b > C » d

»
>

e

| f

f

front

!
back

// Basic idea only!
enqueue (x) {
back.next = new Node (x) ;
back = back.next;

}

// Basic idea only!
dequeue () {
x = front.item;
front = front.next;
return x;

}
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What if queue is empty?
— Enqueue?
— Dequeue?

Can list be full?

How to test for empty?

What is the complexity of
the operations?

Can you find the kt
element in the queue?
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Array:

Circular Array vs. Linked List

May waste unneeded space —
or run out of space _

Space per element excellent _
Operations very simple / fast _

Constant-time access to k"
element

For operation insertAtPosition, —
must shift all later elements

— Not in Queue ADT

List:

Always just enough space
But more space per element
Operations very simple / fast

No constant-time access to kth
element

For operation insertAtPosition
must traverse all earlier elements

— Not in Queue ADT

This is something every trained computer scientist knows in his/her
sleep —it’s like knowing how to do arithmetic
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The Stack ADT

A /E DCBA
Operations: \

create
destroy
push
pop

top

mmoO W

is empty

Can also be implemented with an array or a linked list
— This is Project 1!
— Like queues, type of elements is irrelevant
+ |deal for Java’s generic types (section and Project 1B)
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