CSE332: Data Abstractions

Lecture 1: Introduction; ADTs; Stacks/Queues

Dan Grossman
Spring 2012

Welcomel!

We have 10 weeks to learn fundamental data structures and
algorithms for organizing and processing information

— “Classic” data structures / algorithms and how to analyze
rigorously their efficiency and when to use them

— Queues, dictionaries, graphs, sorting, etc.
— Parallelism and concurrency (!)

Today In class:
» Course mechanics
« What this course is about
— And how it fits into the CSE curriculum
« Start (finish?) ADTs, stacks, and queues
— Largely review

Spring 2012 CSE332: Data Abstractions

Concise to-do list

In next 24-48 hours:
* Adjust class email-list settings
 Emalil homework 0 (worth O points) to me
 Read all course policies
 Read/skim Chapters 1 and 3 of Weiss book
— Relevant to Project 1, due next week
— Will start Chapter 2 on Wednesday

Possibly:
« Set up your Eclipse / Java environment for Project 1
— Thursday’s section will help

http://www.cs.washington.edu/education/courses/cse332/12sp/

Spring 2012 CSE332: Data Abstractions

Course staff

Dan Grossman Tyler Robison Stanley Wang

Dan: Faculty, “341 guy”, loves 332 too, did parallelism/concurrency part
Tyler: Grad student, TAed 332 many times, taught it Summer 2010
Stanley: Took 332 last quarter

Office hours, email, etc. on course web-page

Spring 2012 CSE332: Data Abstractions 4

Communication

Course email list: cse332a_spl2@Qu

— Students and staff already subscribed

— You must get announcements sent there
— Fairly low traffic

Course staff: cse332-staffRcs plus individual emails

Discussion board
— For appropriate discussions; TAs will monitor
— Optional, won’t use for important announcements

Anonymous feedback link
— For good and bad: if you don't tell me, | don’t know

Spring 2012 CSE332: Data Abstractions

Course meetings

* Lecture (Dan)
— Materials posted (sometimes afterwards), but take notes
— Ask guestions, focus on key ideas (rarely coding details)

« Section (Tyler)
— Often focus on software (Java features, tools, project issues)
— Reinforce key issues from lecture
— Answer homework questions, etc.
— An important part of the course (not optional)

« Office hours
— Use them: please visit me
— ldeally not just for homework questions (but that’s great too)

Spring 2012 CSE332: Data Abstractions 6

Course materials

==w <+ All lecture and section materials will be posted
— But they are visual aids, not always a complete description!
— If you have to miss, find out what you missed

Textbook: Weiss 3" Edition in Java
— Good read, but only responsible for lecture/section/nw topics
— Will assign homework problems from it
— 3" edition improves on 2", but we’ll support the 2nd

Core Java book: A good Java reference (there may be others)
— Don't struggle Googling for features you don’t understand
— Same book recommended for CSE331

» Parallelism / concurrency units in separate free resources
- designed for 332

Spring 2012 CSE332: Data Abstractions 7

Course Work

« 8 written/typed homeworks (25%)
— Due at beginning of class each Friday (not this week)
— No late homeworks accepted
— Often covers through Monday before it's due

« 3 programming projects (with phases) (25%)
— First phase of Project 1 due in 9 days
— Use Java and Eclipse (see this week’s section)
— One 24-hour late-day for the quarter
— Projects 2 and 3 will allow partners
— Most of the grade is code design and write-up questions

* Midterm Friday April 27 (20%)

* Final Tuesday June 5 (25%)

Spring 2012 CSE332: Data Abstractions

Collaboration and Academic Integrity

 Read the course policy very carefully

— Explains quite clearly how you can and cannot get/provide
help on homework and projects

« Always explain any unconventional action on your part
— When it happens, when you submit, not when asked

* | have promoted and enforced academic integrity since | was a
freshman

— | offer great trust but with little sympathy for violations
— Honest work is the most important feature of a university

Spring 2012 CSE332: Data Abstractions

Unsolicited advice

» Getto class on time!
— Instructor pet peeve (I will start and end promptly)
— First 2 minutes are much more important than last 2!
— April 27 will prove beyond any doubt you are capable

« Learn this stuff
— You need it for so many later classes/jobs anyway

— Falling behind only makes more work for you

« Have fun
— So much easier to be motivated and learn

Spring 2012 CSE332: Data Abstractions

10

Today in Class

Course mechanics: Did | forget anything?

What this course is about
— And how it fits into the CSE curriculum

Start (finish?) ADTSs, stacks, and queues
— Largely review

Spring 2012 CSE332: Data Abstractions

11

Data Structures + Threads

« About 70% of the course is a “classic data-structures course”
— Timeless, essential stuff
— Core data structures and algorithms that underlie most software
— How to analyze algorithms

» Plus a serious first treatment of programming with multiple threads
— For parallelism: Use multiple processors to finish sooner
— For concurrency: Correct access to shared resources
— Will make many connections to the classic material

Spring 2012 CSE332: Data Abstractions 12

Where 332 fits

[] required
[Clcs required

[] CompE required
] not required

pre-req
" "p co-req or pre-req

Also the most common pre-req among 400-level courses

331
Sw Design /
Impl

311
Foundations
|

351
Hw/Sw
Interface

352
Hw Design /

— And essential stuff for many internships

Spring 2012

CSE332: Data Abstractions

Foundations

Languages

333
Systems
Programming

13

What is 332 Is about

« Deeply understand the basic structures used in all software
— Understand the data structures and their trade-offs
— Rigorously analyze the algorithms that use them (math!)
— Learn how to pick “the right thing for the job”

« EXxperience the purposes and headaches of multithreading

» Practice design, analysis, and implementation

— The elegant interplay of “theory” and “engineering” at the
core of computer science

Spring 2012 CSE332: Data Abstractions

14

Goals

 Be able to make good design choices as a developer, project
manager, etc.

— Reason in terms of the general abstractions that come up in
all non-trivial software (and many non-software) systems

« Be able to justify and communicate your design decisions

Dan’s take:

3 years from now this course will seem like it was a waste of
your time because you can’t imagine not “just knowing” every
main concept in it

— Key abstractions computer scientists and engineers use
almost every day

— A big piece of what separates us from others

Spring 2012 CSE332: Data Abstractions 15

Data structures

(Often highly non-obvious) ways to organize information to enable
efficient computation over that information

— Key goal over the next week is introducing asymptotic
analysis to precisely and generally describe efficient use of
time and space

A data structure supports certain operations, each with a:
— Meaning: what does the operation do/return
— Performance: how efficient is the operation

Examples:
— List with operations insert and delete

— Stack with operations push and pop

Spring 2012 CSE332: Data Abstractions 16

Trade-offs

A data structure strives to provide many useful, efficient operations

But there are unavoidable trade-offs:
— Time vs. space
— One operation more efficient if another less efficient
— Generality vs. simplicity vs. performance

That is why there are many data structures and educated CSEers
Internalize their main trade-offs and techniques

— And recognize logarithmic < linear < quadratic < exponential

Spring 2012 CSE332: Data Abstractions 17

Terminology

Abstract Data Type (ADT)
— Mathematical description of a “thing” with set of operations

Algorithm

— A high level, language-independent description of a step-by-
step process

Data structure
— A specific family of algorithms for implementing an ADT

Implementation of a data structure
— A specific implementation in a specific language

Spring 2012 CSE332: Data Abstractions 18

Example: Stacks

« The Stack ADT supports operations:
— isEmpty: have there been same number of pops as pushes
— push: takes an item

— pop: raises an error if ISEmpty, else returns most-recently
pushed item not yet returned by a pop

— ... (possibly more operations)

« A Stack data structure could use a linked-list or an array or
something else, and associated algorithms for the operations

* One implementation is in the library java.util.Stack

Spring 2012 CSE332: Data Abstractions 19

Why useful

The Stack ADT is a useful abstraction because:
* [tarises all the time in programming (e.g., see Weiss 3.6.3)
— Recursive function calls
— Balancing symbols (parentheses)
— Evaluating postfix notation: 34 +5*
— Clever: Infix ((3+4) * 5) to postfix conversion (see text)

« We can code up a reusable library
« We can communicate in high-level terms

— “Use a stack and push numbers, popping for operators...”
— Rather than, “create a linked list and add a node when...”

Spring 2012 CSE332: Data Abstractions

20

The Queue ADT

« QOperations
create

destroy
enqueue
dequeue
is empty

G &, FEDCB

dequeue

« Just like a stack except:
— Stack: LIFO (last-in-first-out)
— Queue: FIFO (first-in-first-out)

» Just as useful and ubiquitous

Spring 2012

CSE332: Data Abstractions

21

Circular Array Queue Data Structure

Q:

0

size -1

bic|ld|e]|f

frontT ba(:kT

// Basic idea only!
enqueue (x) {
Q[back]

back
}

// Basic idea only!
dequeue () {
x = Q[front];

front

}

Spring 2012

(front + 1) % size;
return x;

(back + 1) % size

CSE332: Data Abstractions

What if queue is empty?
— Enqueue?
— Dequeue?
What if array is full?
How to test for empty?

What is the complexity of
the operations?

Can you find the kt
element in the queue?

22

Linked List Queue Data Structure

b > C » d

»
>

e

| f

f

front

!
back

// Basic idea only!
enqueue (x) {
back.next = new Node (x) ;
back = back.next;

}

// Basic idea only!
dequeue () {
x = front.item;
front = front.next;
return x;

}

Spring 2012 CSE332: Data Abstractions

What if queue is empty?
— Enqueue?
— Dequeue?

Can list be full?

How to test for empty?

What is the complexity of
the operations?

Can you find the kt
element in the queue?

23

Array:

Circular Array vs. Linked List

May waste unneeded space —
or run out of space _

Space per element excellent _
Operations very simple / fast _

Constant-time access to k"
element

For operation insertAtPosition, —
must shift all later elements

— Not in Queue ADT

List:

Always just enough space
But more space per element
Operations very simple / fast

No constant-time access to kth
element

For operation insertAtPosition
must traverse all earlier elements

— Not in Queue ADT

This is something every trained computer scientist knows in his/her
sleep —it’s like knowing how to do arithmetic

Spring 2012 CSE332: Data Abstractions 24

The Stack ADT

A /E DCBA
Operations: \

create
destroy
push
pop

top

mmoO W

is empty

Can also be implemented with an array or a linked list
— This is Project 1!
— Like queues, type of elements is irrelevant
+ |deal for Java’s generic types (section and Project 1B)

Spring 2012 CSE332: Data Abstractions 25

