
CSE332 Data Abstractions, Spring 2012
Homework 6

Due: Friday, May 18, 2012 at the beginning of class. Your work should be readable as well as correct.

This assignment has three problems.

Problem 1. Fork-Join Parallelism: Longest Series

Consider the problem of finding the longest sequence of some number in an array of numbers:
longest sequence(i,arr) returns the longest number of consecutive i in arr. For example, if
arr is {2,17,17,8,17,17,17,0,17,1} then longest sequence(17,arr) is 3 and longest sequence(9,arr)

is 0.

(a) In pseudocode, give a parallel fork-join algorithm for implementing longest sequence. Your algorithm
should have work O(n) and span O(log n) where n is the length of the array. Do not employ a sequential
cut-off: your base case should process an array range containing one element. Hint: Use this definition:

class Result {

int numLeftEdge;

int numRightEdge;

int numLongest;

boolean entireRange;

Result(int l, int r, int m, boolean a) {

numLeftEdge=l; numRightEdge=r; numLongest=m; entireRange=a;

}

}

For example, numLeftEdge should represent the length of the sequence at the beginning of the range
processed by a subproblem. Think carefully about how to combine results.

(b) In English, describe how you would make your answer to part (a) more efficient by using a sequential
cut-off. In pseudocode, show the code you would use below this cut-off.

Problem 2. Fork-Join Parallelism: Leftmost Occurrence of Substring

Consider the problem of finding the leftmost occurrence of the sequence of characters cseRox in an array of
characters, returning the index of the leftmost occurrence or -1 if there is none. For example, the answer
for the sequence cseRhellocseRoxmomcseRox is 9.

(a) In English (though some high-level pseudocode will probably help), describe a fork-join algorithm
similar in design to your solution in problem 1. Use a sequential cut-off of at least 6 (the length of
cseRox) and explain why this significantly simplifies your solution. Notice you still must deal with the
leftmost occurrence being “split” across two recursive subproblems.

(b) Give a much simpler fork-join solution to the problem that avoids the possibility of a “split” by using
slightly overlapping subproblems. Assume a larger sequential cut-off, for example 100. Give your
solution precisely in pseudocode. Avoid off-by-one errors.

1



Problem 3. Amdahl’s Law: Graphing the Pain

Use a graphing program such as a spreadsheet to plot the following implications of Amdahl’s Law. Turn in
the graphs and tables with the data.

(a) Consider the speed-up (T1/TP ) where P = 256 of a program with sequential portion S where the
portion 1− S enjoys perfect linear speed-up. Plot the speed-up as S ranges from .01 (1% sequential)
to .25 (25% sequential).

(b) Consider again the speed-up of a program with sequential portion S where the portion 1 − S enjoys
perfect linear speed-up. This time, hold S constant and vary the number of processors P from 2 to 32.
On the same graph, show three curves, one each for S = .01, S = .1, and S = .25.

2


