1. Find values for c and n₀ (according to the definition of $O(\cdot)$) for $f(n)$ is $O(g(n))$, where
 a. $f(n)=7n^2+3n$
 $g(n)=n^4$
 b. $f(n)=n+2\log n$
 $g(n)=n\log n$
 c. $f(n)=1000$
 $g(n)=3n^3$
 d. $f(n)=7n$
 $g(n)=n/10$

2. True or false?
 a. $f(n)$ is $\Theta(g(n))$ implies $f(n)$ is $O(g(n))$
 b. $f(n)$ is $\Theta(g(n))$ implies $g(n)$ is $\Theta(f(n))$
 c. $f(n)$ is $\Omega(g(n))$ implies $f(n)$ is $O(g(n))$

3. Find functions $f(n)$ and $g(n)$ such that $f(n)$ is $O(g(n))$ and the constant c for the definition of $O(\cdot)$ must be >1. That is, find f & g such that c must be greater than 1, as there is no sufficient $n₀$ when $c=1$.

4. Write the $O(\cdot)$ run-time of the functions with the following recurrence relations
 a. $T(n)=3+T(n-1)$, where $T(0)=1$
 b. $T(n)=3+T(n/2)$, where $T(1)=1$
 c. $T(n)=3+T(n-1)+T(n-1)$, where $T(0)=1$

5. What’s the $O(\cdot)$ run-time of this code fragment in terms of n:

   ```java
   int x=0;
   for(int i=n;i>=0;i--)
       if((i%3)==0) break;
       else x+=i;
   ```