Overview

- Asymptotic analysis
 - Why we care
 - Big Oh notation
 - Examples
 - Caveats & miscellany
 - Evaluating an algorithm
 - Big Oh’s family
 - Recurrence relations
What do we want to analyze?

- Correctness
- Performance: Algorithm’s speed or memory usage: our focus
 - Change in speed as the input grows
 - n increases by 1
 - n doubles
 - Comparison between 2 algorithms
- Security
- Reliability
Gauging performance

- Uh, why not just run the program and time it?
 - Too much variability; not reliable:
 - Hardware: processor(s), memory, etc.
 - OS, version of Java, libraries, drivers
 - Programs running in the background
 - Implementation dependent
 - Choice of input
 - Timing doesn’t really evaluate the algorithm; it evaluates its implementation in one very specific scenario
Gauging performance (cont.)

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
 - Will do some timing in project 3 (and in 2, a bit)
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful
Big-Oh

- Say we’re given 2 run-time functions $f(n)$ & $g(n)$ for input n
- The Definition: $f(n)$ is in $O(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \leq c \cdot g(n)$, for all $n \geq n_0$.

- The Idea: Can we find an n_0 such that g is always greater than f from there on out?

 We are allowed to multiply g by a constant value (say, 10) to make g larger.

 $O(g(n))$ is really a set of functions whose asymptotic behavior is less than or equal that of $g(n)$

 Think of ‘$f(n)$ is in $O(g(n))$’ as $f(n) \leq g(n)$ (sort of)

 or ‘$f(n)$ is in $O(g(n))$’ as $g(n)$ is an upper-bound for $f(n)$ (sort of)
The Intuition:
Take functions f(n) & g(n), consider only the most significant term and remove constant multipliers:
- 5n+3 → n
- 7n+.5n²+2000 → n²
- 300n+12+nlogn → nlogn
- – n → ?? What does it mean to have a negative run-time?

Then compare the functions; if f(n) ≤ g(n), then
f(n) is in O(g(n))

Do NOT ignore constants that are not multipliers:
- n³ is O(n²) : FALSE
- 3ⁿ is O(2ⁿ) : FALSE

When in doubt, refer to the definition
Examples

- True or false?
 1. $4+3n$ is $O(n)$ True
 2. $n+2\log n$ is $O(\log n)$ False
 3. $\log n+2$ is $O(1)$ False
 4. n^{50} is $O(1.1^n)$ True
Examples (cont.)

- For $f(n) = 4n$ & $g(n) = n^2$, prove $f(n)$ is in $O(g(n))$
 - A valid proof is to find valid c & n_0
 - When $n = 4$, $f = 16$ & $g = 16$; this is the crossing over point
 - Say $n_0 = 4$, and $c = 1$
 - (Infinitely) Many possible choices: ex: $n_0 = 78$, and $c = 42$ works fine

The Definition: $f(n)$ is in $O(g(n))$ if and only if there exist positive constants c and n_0 such that $f(n) \leq c g(n)$ for all $n \geq n_0$.
Examples (cont.)

- For $f(n)=n^4$ & $g(n)=2^n$, prove $f(n)$ is in $O(g(n))$
 - Possible answer: $n_0=20$, $c=1$

The Definition: $f(n)$ is in $O(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.
What’s with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)

- Consider:

 \[f(n) = 7n + 5 \]

 \[g(n) = n \]

- These have the same asymptotic behavior (linear), so \(f(n) \) is in \(O(g(n)) \) even though \(f \) is always larger

- There is no positive \(n_0 \) such that \(f(n) \leq g(n) \) for all \(n \geq n_0 \)

- The ‘c’ in the definition allows for that

- To prove \(f(n) \) is in \(O(g(n)) \), have \(c = 12 \), \(n_0 = 1 \)
Big Oh: Common Categories

From fastest to slowest

- $O(1)$: constant (same as $O(k)$ for constant k)
- $O(\log n)$: logarithmic
- $O(n)$: linear
- $O(n \log n)$: “$n \log n$”
- $O(n^2)$: quadratic
- $O(n^3)$: cubic
- $O(n^k)$: polynomial (where k is an constant)
- $O(k^n)$: exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it means “grows at rate proportional to k^n for some $k>1$”
- A savings account accrues interest exponentially ($k=1.01$?)
Caveats

- Asymptotic complexity focuses on behavior for large n and is independent of any computer/coding trick, but results can be misleading

 - Example: $n^{1/10}$ vs. $\log n$
 - Asymptotically $n^{1/10}$ grows more quickly
 - But the “cross-over” point is around 5×10^{17}
 - So if you have input size less than 2^{58}, prefer $n^{1/10}$
Caveats

- Even for more common functions, comparing $O()$ for small n values can be misleading
 - Quicksort: $O(n \log n)$ (expected)
 - Insertion Sort: $O(n^2)$ (expected)
 - Yet in reality Insertion Sort is faster for small n’s
 - We’ll learn about these sorts later

- Usually talk about an algorithm being $O(n)$ or whatever
 - But you can prove bounds for entire problems
 - Ex: No algorithm can do better than $\log n$ in the worst case for finding an element in a sorted array, without parallelism
Not uncommon to evaluate for:
- Best-case
- Worst-case
- ‘Expected case’

So we say \((3n^2+17) \text{ is in } O(n^2)\)

Confusingly, we also say/write:
- \((3n^2+17) \text{ is } O(n^2)\)
- \((3n^2+17) = O(n^2)\)

But it’s not ‘=‘ as in ‘equality’:
- We would never say \(O(n^2) = (3n^2+17)\)
Analyzing code ("worst case")

Basic operations take "some amount of" constant time:
- Arithmetic (fixed-width)
- Assignment to a variable
- Access one Java field or array index
- Etc.

(This is an approximation of reality: a useful "lie".)

Consecutive statements
Conditionals
Loops
Calls
Recursion

Sum of times
Time of test plus slower branch
Sum of iterations
Time of call’s body
Solve recurrence equation (in a bit)
Analyzing code

What is the run-time for the following code when

1. `for(int i=0; i<n; i++) O(1)`
 - $O(n)$

2. `for(int i=0; i<n; i++) O(i)`
 - $O(n^2)$

3. `for(int i=0; i<n; i++) for(int j=0; j<n; j++) O(n)`
 - $O(n^3)$
Big Oh’s Family

- **Big Oh:** Upper bound: $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
 - $g(n)$ is in $O(f(n))$ if there exist constants c and n_0 such that
 $$g(n) \leq c f(n) \text{ for all } n \geq n_0$$

- **Big Omega:** Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
 - $g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_0 such that
 $$g(n) \geq c f(n) \text{ for all } n \geq n_0$$

- **Big Theta:** Tight bound: $\Theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
 - Intersection of $O(f(n))$ and $\Omega(f(n))$ (use different c values)
Regarding use of terms

Common error is to say $O(f(n))$ when you mean $\theta(f(n))$

- People often say $O()$ to mean a tight bound
- Say we have $f(n)=n$; we could say $f(n)$ is in $O(n)$, which is true, but only conveys the upper-bound
- Somewhat incomplete; instead say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- “little-oh”: like “big-Oh” but strictly less than
 - Example: sum is $o(n^2)$ but not $o(n)$
- “little-omega”: like “big-Omega” but strictly greater than
 - Example: sum is $\omega(\log n)$ but not $\omega(n)$
Recurrence Relations

- Computing run-times gets interesting with recursion
- Say we want to perform some computation recursively on a list of size n
 - Conceptually, in each recursive call we:
 - Perform some amount of work, call it $w(n)$
 - Call the function recursively with a smaller portion of the list

So, if we do $w(n)$ work per step, and reduce the n in the next recursive call by 1, we do total work:

$$T(n) = w(n) + T(n-1)$$

With some base case, like $T(1) = 5 = O(1)$
Recursive version of sum array

Recursive:
- Recurrence is $k + k + \ldots + k$
 for n times

```
int sum(int[] arr){
    return help(arr,0);
}
int help(int[] arr, int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```

Recurrence Relation: $T(n) = O(1) + T(n-1)$
Recurrence Relations (cont.)

Say we have the following recurrence relation:
\[T(n) = 2 + T(n-1) \]
\[T(1) = 5 \]

Now we just need to solve it; that is, reduce it to a closed form

Start by writing it out:
\[T(n) = 2 + T(n-1) = 2 + 2 + T(n-2) = 2 + 2 + 2 + T(n-3) \]
\[= 2 + 2 + 2 + \ldots + 2 + T(1) = 2 + 2 + 2 + \ldots + 2 + 5 \]

So it looks like
\[T(n) = 2(n-1) + 5 = 2n + 3 = O(n) \]
Example: Find k

Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
    ???
}
```
Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    for (int i = 0; i < arr.length; ++i)
        if (arr[i] == k)
            return true;
    return false;
}
```

Best case: 6ish steps = $O(1)$
Worst case: 6ish*(arr.length) = $O(arr.length) = O(n)$
Binary search

Find an integer in a sorted array
 - Can also be done non-recursively but “doesn’t matter” here

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi + lo) / 2; // i.e., lo+(hi-lo)/2
    if (lo == hi) return false;
    if (arr[mid] == k) return true;
    if (arr[mid] < k) return help(arr, k, mid + 1, hi);
    else return help(arr, k, lo, mid);
}
```
Binary search

Best case: 8ish steps = O(1)
Worst case:
\[T(n) = 10ish + T(n/2) \] where \(n \) is hi-lo

// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
 return help(arr, k, 0, arr.length);
}
boolean help(int[] arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2;
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr, k, mid+1, hi);
 else return help(arr, k, lo, mid);
}
1. Determine the recurrence relation. What is the base case?
 \[T(n) = 10 + T(n/2) \quad T(1) = 8 \]

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.
 \[T(n) = 10 + 10 + T(n/4) \]
 \[= 10 + 10 + 10 + T(n/8) \]
 \[= \ldots \]
 \[= 10k + T(n/(2^k)) \] where k is the # of expansions

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case
 \[n/(2^k) = 1 \text{ means } n = 2^k \text{ means } k = \log_2 n \]
 So \[T(n) = 10 \log_2 n + 8 \] (get to base case and do it)
 So \[T(n) \text{ is } O(\log n) \]
Linear vs Binary Search

- So binary search is $O(\log n)$ and linear is $O(n)$
 - Given the constants, linear search could still be faster for small values of n

Example w/ hypothetical constants:
Recurrence is $T(n) = O(1) + 2T(n/2) = O(n)$

(Proof left as an exercise)

“Obvious”: have to read the whole array

You can’t do better than $O(n)$

Or can you…

We’ll see a parallel version of this much later

With ∞ processors, $T(n) = O(1) + 1T(n/2) = O(\log n)$
Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

\[
T(n) = O(1) + T(n-1) \quad \text{linear}
\]
\[
T(n) = O(1) + 2T(n/2) \quad \text{linear}
\]
\[
T(n) = O(1) + T(n/2) \quad \text{logarithmic}
\]
\[
T(n) = O(1) + 2T(n-1) \quad \text{exponential}
\]
\[
T(n) = O(n) + T(n-1) \quad \text{quadratic}
\]
\[
T(n) = O(n) + T(n/2) \quad \text{linear}
\]
\[
T(n) = O(n) + 2T(n/2) \quad O(n \log n)
\]

Note big-Oh can also use more than one variable (graphs: vertices & edges)

- Example: you can (and will in proj3!) sum all elements of an \(n \)-by-\(m \) matrix in \(O(nm) \)