CSE332: Data Abstractions

Lecture 21: Parallel Prefix and Parallel Sorting

Tyler Robison
Summer 2010
What next?

Done:
- Simple ways to use parallelism for counting, summing, finding elements
- Analysis of running time and implications of Amdahl’s Law

Now:
- Clever ways to parallelize more effectively than is intuitively possible
- Parallel prefix:
 - This “key trick” typically underlies surprising parallelization
 - Enables other things like filters
- Parallel sorting: quicksort (not in place) and mergesort
 - Easy to get a little parallelism
 - With cleverness can get a lot
The prefix-sum problem

Given \texttt{int[]} \texttt{input}, produce \texttt{int[]} \texttt{output} where \texttt{output[i]} is the sum of \texttt{input[0]}+\texttt{input[1]}+…\texttt{input[i]}

\begin{center}
\begin{tabular}{cccccccc}
in & 6 & 4 & 16 & 10 & 16 & 14 & 2 & 8 \\
out & 6 & 10 & 26 & 36 & 52 & 66 & 68 & 76 \\
\end{tabular}
\end{center}

Sequential is easy enough for a CSE142 exam:

```java
int[] prefix_sum(int[] input) {
    int[] output = new int[input.length];
    output[0] = input[0];
    for (int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}
```

This does not appear to be parallelizable; each cell depends on previous cell

- Work: \(O(n)\), Span: \(O(n)\)
- This algorithm is sequential, but we can design a different algorithm with parallelism for the same problem
The Parallel Prefix-Sum Algorithm

The parallel-prefix algorithm has $O(n)$ work but a span of $2\log n$

- So span is $O(\log n)$ and parallelism is $n/\log n$, an exponential speedup just like array summing

- The 2 is because there will be two “passes” on the tree – more later

- Historical note / local bragging:
 - Original algorithm due to R. Ladner and M. Fischer in 1977
 - Richard Ladner joined the UW faculty in 1971 and hasn’t left

1968? 1973? recent
The (completely non-obvious) idea:
Do an initial pass to gather information, enabling us to do a second pass to get the answer.

First we’ll gather the ‘sum’ for each recursive block.
First pass

For each node, get the sum of all values in its range; propagate sum up from leaves.

Will work like parallel sum, but recording intermediate information.

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Second pass

Using ‘sum’, get the sum of everything to the left of this range (call it ‘fromleft’); propagate down from root.

Input

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
</table>

Output

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>10</th>
<th>26</th>
<th>36</th>
<th>52</th>
<th>66</th>
<th>68</th>
<th>76</th>
</tr>
</thead>
</table>
The algorithm, part 1

1. Propagate ‘sum’ up: Build a binary tree where
 - Root has sum of input[0]..input[n-1]
 - Each node has sum of input[lo]..input[hi-1]
 - Build up from leaves; parent.sum=left.sum+right.sum
 - A leaf’s sum is just it’s value; input[i]

This is an easy fork-join computation: combine results by actually building a binary tree with all the sums of ranges
 - Tree built bottom-up in parallel
 - Could be more clever; ex: heap-like ‘array as tree’ representation

Analysis of this step: \(O(n)\) work, \(O(\log n)\) span
The algorithm, part 2

2. Propagate ‘from_left’ down:
 - Root given a from_left of 0
 - Node takes its from_left value and
 - Passes its left child the same from_left
 - Passes its right child its from_left plus its left child’s sum (as stored in part 1)
 - At the leaf for array position i, output[i]=from_left+input[i]

This is another fork-join computation: traverse the tree built in step 1 and assign to output at leaves (don’t return a result)

Analysis of this step: \(O(n) \) work, \(O(\log n) \) span
Total for algorithm: \(O(n) \) work, \(O(\log n) \) span
Sequential cut-off

Adding a sequential cut-off isn’t too bad:

- Step One: Propagating Up:
 Sequentially compute sum for range
 The tree itself will be shallower

- Step Two: Propagating Down:

  ```
  output[lo] = fromLeft + input[lo];
  for(i=lo+1; i < hi; i++)
    output[i] = output[i-1] + input[i]
  ```
Parallel prefix, generalized

Just as sum-array was the simplest example of a pattern that matches many problems, so is prefix-sum

- Array that stores minimum/maximum of all elements to the left of i, for any i

- Is there an element to the left of i satisfying some property?

- Count of all elements to the left of i satisfying some property

- We did an *inclusive* sum, but *exclusive* is just as easy
‘Min to the left of i‘:
Step One: Find ‘min’ of each range
Step Two: Find ‘fromleft’
Filter

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that \(f(\text{elt}) \) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] \(f: \text{is elt} > 10 \) output [17, 11, 13, 19, 24]

Looks hard to parallelize

- Determining whether an element belongs in the output is easy
- But getting them in the right place in the output is hard; seems to depend on previous results
Parallel prefix to the rescue

1. Use a parallel map to compute a bit-vector for true elements
 input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. Do parallel-prefix sum on the bit-vector
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Allocate an output array with size bitsum[input.length-1]

4. Use a parallel map on input; if element \(i \) passes test, put it in output at index bitsum[\(i \)]-1
 Result: output [17, 11, 13, 19, 24]

```java
output = new array of size bitsum[n-1]
if(bitsum[0]==1) output[0] = input[0];
FORALL(i=1; i < input.length; i++)
    if(bitsum[i] > bitsum[i-1])
        output[bitsum[i]-1] = input[i];
```

Filter: \(\text{elt} > 10 \)
Filter comments

- First two steps can be combined into one pass
 - Just using a different base case for the prefix sum
 - Has no effect on asymptotic complexity

- Analysis: $O(n)$ work, $O(\log n)$ span
 - 3 or so passes, but 3 is a constant

- We’ll use a parallelized filters to parallelize quicksort
Quicksort review

Recall quicksort was sequential, in-place, expected time $O(n \log n)$ (and not stable)

1. Pick a pivot element \(O(1)\)
2. Partition all the data into:
 A. The elements less than the pivot \(O(n)\)
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C \(2T(n/2)\)

Recurrence (assuming a good pivot):
\[
T(0)=T(1)=1 \\
T(n)=2T(n/2) + n
\]

Run-time: \(O(n\log n)\)

How should we parallelize this?
Quicksort

Best / expected case work

1. Pick a pivot element \(O(1) \)
2. Partition all the data into:
 A. The elements less than the pivot \(O(n) \)
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C \(2T(n/2) \)

First: Do the two recursive calls in parallel
- Work: unchanged of course \(O(n \log n) \)
- Now recurrence takes the form:
 \[O(n) + 1T(n/2) \]
 So \(O(n) \) span
- So parallelism (i.e., work/span) is \(O(\log n) \)
Doing better

- An \(O(\log n) \) speed-up with an infinite number of processors is okay, but a bit underwhelming
 - Sort \(10^9 \) elements 30 times faster is decent…

- Google searches suggest quicksort cannot do better because the partition cannot be parallelized
 - The Internet has been known to be wrong 😊
 - But we need auxiliary storage (no longer in place)
 - In practice, constant factors may make it not worth it, but remember Amdahl’s Law

- Already have everything we need to parallelize the partition…
Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

- This is just two filters!
 - We know a filter is $O(n)$ work, $O(\log n)$ span
 - Filter elements less than pivot into left side of aux array
 - Filter elements greater than pivot into right size of aux array
 - Put pivot in-between them and recursively sort
 - With a little more cleverness, can do both filters at once but no effect on asymptotic complexity

- With $O(\log n)$ span for partition, the total span for quicksort is $O(\log n) + 1T(n/2) = O(\log^2 n)$
Step 1: pick pivot as median of three

- Steps 2a and 2a (combinable): filter less than, then filter greater than into a second array

- Step 3: Two recursive sorts in parallel
 - Can sort back into original array (like in mergesort)
Now mergesort

Recall mergesort: sequential, not-in-place, worst-case $O(n \log n)$

1. Sort left half and right half
2. Merge results

Best / expected case work

- $2T(n/2)$
- $O(n)$

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the span to $O(n) + 1T(n/2) = O(n)$

- Again, parallelism is $O(\log n)$
- To do better we need to parallelize the merge
 - The trick won’t use parallel prefix this time
Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)
Idea: Recursively divide subarrays in half, merge halves in parallel

Suppose the larger subarray has n elements. In parallel,
• Pick the median element of the larger array (here 6) in constant time
• In the other array, use binary search to find the first element greater than or equal to that median (here 7)
• Merge, in parallel, half the larger array (from the median onward) with the upper part of the shorter array
• Merge, in parallel, the lower part of the larger array with the lower part of the shorter array
Parallelizing the merge

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
Parallelizing the merge

1. Get median of bigger half: \(O(1) \) to compute middle index
Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: $O(\log n)$ to do binary search on the sorted small half
Parallelizing the merge

1. Get median of bigger half: \(O(1) \) to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: \(O(\log n) \) to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: \(O(1) \)
Parallelizing the merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: $O(\log n)$ to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: $O(1)$
4. Do two submerges in parallel
The Recursion

When we do each merge in parallel, we split the bigger one in half and use binary search to split the smaller one.
Analysis

- Sequential recurrence for mergesort:
 \[T(n) = 2T(n/2) + O(n) \text{ which is } O(n \log n) \]

- Doing the two recursive calls in parallel but a sequential merge:
 work: same as sequential \[\text{span: } T(n) = 1T(n/2) + O(n) \text{ which is } O(n) \]

For the parallel merge step of \(n \) elements (work not shown) it turns out to be (just for the merge)

- Span \(O(\log^2 n) \)
- Work \(O(n) \)

So for mergesort with parallel merge overall:

- Span is \(T(n) = 1T(n/2) + O(\log^2 n), \text{ which is } O(\log^3 n) \)
- Work is \(T(n) = 2T(n/2) + O(n), \text{ which is } O(n \log n) \)

So parallelism (work / span) is \(O(n / \log^2 n) \)

- Not quite as good as quicksort, but it is a worst-case guarantee (unlike quicksort)
- And as always this is just the asymptotic result