CSE332: Data Abstractions

Lecture 16: Topological Sort / Graph Traversals

Tyler Robison

Summer 2010
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it.

Example input:

Example output:

142, 126, 143, 311, 331, 332, 312, 341, 351, 333, 440, 352
Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer

- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph

- What DAGs have exactly 1 answer?
 - Lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Uses

- Figuring out how to finish your degree
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution
A first algorithm for topological sort

1. Label each vertex with its in-degree
 - Labeling also called marking
 - Think “write in a field in the vertex”, though you could also do this with a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and remove it (conceptually) from the graph
 c) For each vertex u adjacent to v (i.e. u such that $(v,u) \in E$), decrement the in-degree of u
Example

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed?
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
Example

Output: 126

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

1
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1
 0

Output: 126 142
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 0 0 0 0
 0

Output: 126 142 143
Example

Output: 126 142 143 311

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x

In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

...
Example

Output: 126 142 143 311 331

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
1 0 1 0 0 0 0 0 0
0
Example

Output: 126
142
143
311
331
332

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1
 1 0 1 0 0 1 0 0 0 0
 0 0
Example

Output: 126 142 143 311 331 332 312

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

\[
\begin{array}{ccccccccccccc}
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & & & & & & & \\
& & & & & & \end{array}
\]
Example

```text
Node:    126 142 143 311 312 331 332 333 341 351 352 440
Removed?:  x  x  x  x  x  x  x  x  x  x  x  x
In-degree: 0   0   2   1   2   1   1   2   1   1   1   1
            1   0   1   0   0   1   0   0   0   0
```
Example

Node: 126 142 143 311 312 331 332 333 341 351 352 440
Removed? x x x x x x x x x x x x
In-degree: 0 0 2 1 2 1 1 2 1 1 1 1

Output: 126
 142
 143
 311
 331
 332
 312
 341
 351
 333
 352
 352
 440
A couple of things to note

- Needed a vertex with in-degree of 0 to start
 - No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
 - Potentially many different correct orders
Running time?

```java
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

- What is the worst-case running time?
 - Initialization $O(|V|)$
 - Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 - Sum of all decrements $O(|E|)$ (assuming adjacency list)
 - So total is $O(|V|^2)$ – not good for a sparse graph!
Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the “pending” zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u, if new degree is 0, enqueue it
Running time now?

```java
labelAllAndEnqueueZeros();
for (ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if (w.indegree==0) enqueue(v);
    }
}
```

- What is the worst-case running time?
 - Initialization: $O(|V|)$
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|E| + |V|)$ – much better for sparse graph!
Graph Traversals

Next problem: For an arbitrary graph and a starting node \(v \), find all nodes \textit{reachable} (i.e., there exists a path) from \(v \)
- Possibly “do something” for each node
 - Print to output, set some field, etc.

Related:
- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
 - For strongly, need a cycle back to starting node for all nodes

Basic idea:
- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
traverseGraph(Node start) {
 Set pending = emptySet();
 pending.add(start)
 mark start as visited
 while (pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if (u is not marked) {
 mark u
 pending.add(u)
 }
 }
}
Running time and options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$

- The order we traverse depends entirely on add and remove
 - Popular choice: a stack “depth-first graph search” “DFS”
 - Popular choice: a queue “breadth-first graph search” “BFS”

- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: Explore areas closer to the start node first

- Aside: These are important concepts in AI
 - Conceive of tree of all possible chess states
 - Traverse to find ‘optimal’ strategy
In a tree DFS and BFS are particularly easy to “see”

DFS(Node start) {
 initialize stack s to hold start
 mark start as visited
 while(s is not empty) {
 next = s.pop()
 for each node u adjacent to next
 if(u is not marked)
 mark u and push onto s
 }
}

- A, C, F, H, G, B, E, D
 - The marking is because we support arbitrary graphs and we want to process each node exactly once
Example: trees

- In a tree DFS and BFS are particularly easy to “see”

```java
BFS(Node start) {
    initialize queue q to hold start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue()
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

- A, B, C, D, E, F, G, H
- A “level-order” traversal
Comparison

- Breadth-first always finds shortest paths – “optimal solutions”
 - Why?
 - Better for “what is the shortest path from x to y”

- But depth-first can use less space in finding a path
 - If longest path in the graph is \(p \) and highest out-degree is \(d \) then DFS stack never has more than \(d \times p \) elements
 - But a queue for BFS may hold \(O(|V|) \) nodes

- A third approach:
 - Iterative deepening (IDFS): Try DFS but don’t allow recursion more than \(K \) levels deep. If that fails, increment \(K \) and start the entire search over
 - Like BFS, finds shortest paths. Like DFS, less space.
Saving the path

- Our graph traversals can answer the reachability question:
 - “Is there a path from node x to node y?”

- But what if we want to actually output the path?
 - Like getting driving directions rather than just knowing it’s possible to get there!

- Easy:
 - Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler (Texas)
 – Remember marked nodes are not re-enqueued
 – Not shortest paths may not be unique