CSE332: Data Abstractions

Lecture 15: Introduction to Graphs

Tyler Robison

2010 Summer
Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept

- A graph is a pair of sets

\[
G = (V, E)
\]

 - A set of vertices, also known as nodes
 \[
 V = \{v_1, v_2, \ldots, v_n\}
 \]
 - A set of edges
 \[
 E = \{e_1, e_2, \ldots, e_m\}
 \]
 - Each edge \(e_i\) is a pair of vertices
 - An edge “connects” the vertices

- Graphs can be directed or undirected

\[
V = \{\text{Han}, \text{Leia}, \text{Luke}\}
\]
\[
E = \{(\text{Luke}, \text{Leia}), (\text{Han}, \text{Leia}), (\text{Leia}, \text{Han})\}
\]
Some graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Quite versatile & useful
Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always “two-way”

- Thus, \((u, v) \in E\) implies \((v, u) \in E\).
 - Only one of these edges needs to be in the set; the other is implicit

- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices
In directed graphs (sometimes called digraphs), edges have a specific direction.

- Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
- Let \((u, v) \in E\) mean \(u \rightarrow v\) and call \(u\) the source and \(v\) the destination.

- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination.
- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source.
Self-edges, connectedness, etc.

- A self-edge a.k.a. a loop is an edge of the form \((u, u)\)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (in which case often implicit, but we will be explicit)

- A node can have a degree / in-degree / out-degree of zero

- (Undirected) Connected: We can follow edges from any node to get to any other node
 - Not necessarily connected, even if every node has non-zero degree
For a graph $G = (V, E)$:
- $|V|$ is the number of vertices
- $|E|$ is the number of edges

Minimum edges?
- 0

Maximum edges for undirected?
- $|V|(|V|+1)/2 \in O(|V|^2)$

Maximum edges for directed?
- $|V|^2 \in O(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)

If $(u, v) \in E$
- Then v is a neighbor of u,
 i.e., v is adjacent to u
- Order matters for directed edges
Examples again

Which would use directed edges? Which would have self-edges? Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...
Weighted graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples will use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many don’t

```
Clinton  ┌── 20 ─── Mukilteo
          │      │
    ┌── 30 ─── Kingston  ┼── 35 ─── Bainbridge  ┼── 60 ─── Seattle
          │      │                      │      ┌── 60 ┼── Bremerton
```

Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …
Paths and Cycles

- A **path** is a list of vertices \([v_0, v_1, ..., v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say "a path from \(v_0\) to \(v_n\)."

- A **cycle** is a path that begins and ends at the same node \((v_0 == v_n)\)

Example cycle: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

- **Path length**: Number of *edges* in a path
- **Path cost**: sum of the weights of each edge

Example where

\[P = \text{[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]} \]

\[
\text{length}(P) = 5 \\
\text{cost}(P) = 11.5
\]
Simple paths and cycles

- A **simple path** repeats no vertices, except the first might be the last

 [Seattle, Salt Lake City, San Francisco, Dallas]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

- Recall, a **cycle** is a path that ends where it begins

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A **simple cycle** is a cycle and a simple path

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
Example:

Is there a path from A to D?

Does the graph contain any cycles?
An undirected graph is **connected** if for all pairs of vertices u, v, there exists a path from u to v.

Connected graph

An undirected graph is **complete**, a.k.a. **fully connected** if for all pairs of vertices u, v, there exists an edge from u to v.

Disconnected graph
Directed graph connectivity

- A directed graph is strongly connected if there is a path from every vertex to every other vertex.

- A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges.

- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex.
Examples

For undirected graphs: connected? For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …
Trees as graphs

When talking about graphs, we say a tree is a graph that is:

- acyclic
- connected
- undirected

So all trees are graphs, but not all graphs are trees.
Rooted Trees

- We are more accustomed to **rooted trees** where:
 - We identify a unique (“special”) root
 - We think of edges as directed: parent to children

- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)
Rooted Trees

- We are more accustomed to **rooted trees** where:
 - We identify a unique (“special”) root
 - We think of edges as directed: parent to children

- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)
Directed acyclic graphs (DAGs)

- A **DAG** is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

- Every DAG is a directed graph
- But not every directed graph is a DAG
Problem Representation

- Decision Tree as rooted, directed tree
- Start at root; follow outcome of comparisons

```
a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a
```

```
 a < b  a ? b  a > b
```

```
 a < b < c  a < c < b  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```

```
 a < b < c  a < c < b
```

```
 b < c  b > c
```
Problem Representation

- Quick/MergeSort as a graph
- Nodes as conceptual states of data
Density / sparseness

- Recall: In an undirected graph, $0 \leq |E| \leq |V|^2$
- Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
- So for any graph, $|E|$ is $O(|V|^2)$

- One more fact: If an undirected graph is connected, then $|V| - 1 \leq |E|$

- Because $|E|$ is often much smaller than its maximum size, we do not always approximate as $|E|$ as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., $|E| \in \Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means “lots of edges”
 - If $|E| \in O(|V|)$ we say the graph is sparse
 - More sloppily, sparse means “most possible edges missing”
Now the data structure

- Okay, so graphs are really useful for lots of data and questions we might ask like “what’s the lowest-cost path from x to y”

- But we need a data structure that represents graphs

- Which data structure is “best” can depend on:
 - properties of the graph (e.g., dense versus sparse)
 - the common queries (e.g., is (u, v) an edge versus what are the neighbors of node u)

- So we’ll discuss the two standard graph representations…
 - Different trade-offs, particularly time versus space
Assign each node a number from 0 to $|V| - 1$

A $|V| \times |V|$ matrix (i.e., 2-D array) of booleans (or 1 vs. 0)

If M is the matrix, then $M[u][v] == \text{true}$ means there is an edge from u to v
Adjacency matrix properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- Best for dense graphs
Adjacency matrix properties

- How will the adjacency matrix vary if (un)directed?
 - Undirected: Will be symmetric about diagonal axis
- How can we adapt the representation for weighted graphs?
 - Instead of a boolean, store an int/double in each cell
 - Need some value to represent ‘not an edge’
 - Say -1 or 0

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list (e.g., linked list) of all adjacent vertices
Adjacency List Properties

- **Running time to:**
 - Get all of a vertex’s out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex’s in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists: $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$
 - Delete an edge: $O(d)$ where d is out-degree of source

- **Space requirements:**
 - $O(|V|+|E|)$

- Best for sparse graphs: so usually just stick with linked lists
Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Could save space; only ~1/2 the array is used
- Lists: Each edge in two lists to support efficient “get all neighbors”
Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors.