The Big Picture

Simple algorithms: \(O(n^2)\)
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: \(O(n \log n)\)
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: \(\Omega(n \log n)\)

Specialized algorithms: \(O(n)\)
- Bucket sort
- Radix sort

Handling huge data sets
- External sorting
How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity
 - Maybe find something with $O(n)$ or $O(n \log \log n)$ (recall loglogn is smaller than logn)
 - Instead: prove that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison
 - Show that the best we can do is $O(n\log n)$, for the worst-case
Different View on Sorting

- Assume we have n elements to sort
 - And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, $n=3$, 6 possibilities:
 $$\text{ or }$$

- That is, these are the only possible permutations on the orderings of 3 distinct items
- Generalize to n (distinct) items:
 - n choices for least element, then $n-1$ for next, then $n-2$ for next, …
 - $n(n-1)(n-2)\cdots(2)(1) = n!$ possible orderings
Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to “find” the right answer among the $n!$ possible answers
 - Starts “knowing nothing”; “anything’s possible”
 - Gains information with each comparison, eliminating some possibilities
 - Intuition: At best, each comparison performed can eliminate half of the remaining possibilities
 - In the end narrows down to a single possibility
Representing the Sort Problem

- Can represent this sorting process as a decision tree
 - Nodes are sets of “remaining possibilities”
 - At root, anything is possible; no option eliminated
 - Edges represent comparisons made, and the node resulting from a comparison contains only consistent possibilities
 - Ex: Say we need to know whether a<b or b<a; our root for n=2
 - A comparison between a & b will lead to a node that contains only one possibility
 - Note: This tree is not a data structure, it’s what our proof uses to represent “the most any algorithm could know”
- Aside: Decision trees are a neat tool, sometimes used in AI to, well, make decisions
 - At each state, examine information to reduce space of possibilities
 - Classical example: ‘Should I play tennis today?’; ask questions like ‘Is it raining?’, ‘Is it hot?’, etc. to work towards an answer
Decision tree for n=3

Given sequence: a, b, c (probably unordered)

- a < b < c
- a < c < b
- c < a < b
- a < b
- a > c
- b < c
- b > c
- a < b < c
- a < c < b
- b < c
- b > c
- a > b
- b < a < c
- c < b < a
- b < c
- b > c
- c < a
- c > a
- b < a < c
- b < c < a
- b < a < c
- c < b < a

- Each leaf is one outcome
- The leaves contain all outcomes; all possible orderings of a, b, c
What the decision tree tells us

- A binary tree because each comparison has 2 possible outcomes
 - Perform only comparisons between 2 elements; binary result
 - Ex: Is a<b? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn’t ask redundant questions

- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree
Example: Sorting some data \(a, b, c\)

Possible orders:
- \(a < b < c\)
- \(a < c < b\)
- \(c < a < b\)
- \(b < a < c\)
- \(b < c < a\)
- \(c < b < a\)

Actual order:
- \(a < b < c\)
- \(a < c < b\)
- \(b < c < a\)
- \(b < a < c\)
Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with $n!$ leaves
 - Turns out average-case is same asymptotically
- Great! Now how tall is that…
- Show that a binary tree with $n!$ leaves has height $\Omega(n \log n)$
 - That is nlogn is the lower bound; the height must be at least that
 - Factorial function grows very quickly

- Then we’ll conclude: Comparison Sorting is $\Omega(n \log n)$
 - This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time
The height of a binary tree with L leaves is at least $\log_2 L$

If we pack them in as tightly as possible, each row has about 2x the previous row’s nodes

So the height of our decision tree, h:

$$h \geq \log_2 (n!)$$

$$= \log_2 (n*(n-1)*(n-2)\ldots(2)(1))$$

$$= \log_2 n + \log_2 (n-1) + \ldots + \log_2 1$$

$$\geq \log_2 n + \log_2 (n-1) + \ldots + \log_2 (n/2)$$

$$\geq (n/2) \log_2 (n/2)$$

each of the $n/2$ terms left is $\geq \log_2 (n/2)$

$$= (n/2) (\log_2 n - \log_2 2)$$

$$= (1/2)n\log_2 n - (1/2)n$$

So $h \geq (1/2)n\log_2 n - (1/2)n$

“=“ $\Omega (n \log n)$
The Big Picture

Simple algorithms: \(O(n^2) \)

- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: \(O(n \log n) \)

- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: \(\Omega(n \log n) \)

Handling huge data sets

Specialized algorithms: \(O(n) \)

- Bucket sort
- Radix sort

Change the model – assume more than ‘compare(a,b)’
Say we have a list of integers between 0 & 9 (ignore associated data for the moment)

- Size of list to sort could be huge, but we’d have lots of duplicate values
- Assume our data is stored in ‘int array[]’; how about…
  ```java
  int[] counts = new int[10];
  //init to counts to 0’s
  for (int i = 0; i < array.length; i++) counts[array[i]]++;
  ```
- Can iterate through array in linear time
- Now return to array in sorted order; first counts[0] slots will be 0, next counts[1] will be 1…
- We can put elements, in order, into array[] in O(n)

This works because array assignment is sort of ‘comparing’ against every element currently in counts[] in constant time

- Not merely a 2-way comparison, but an n-way comparison
- Thus not under restrictions of nlogn for Comparison Sorts
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range)...
 - Create an array of size K and put each element in its proper bucket (a.k.a. bin)
 - Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

- Example:
 - $K=5$
 - input (5,1,3,4,3,2,1,1,5,4,5)
 - output: 1,1,1,2,3,3,4,4,5,5,5

If data is only integers, don’t even need to store anything more than a count of how times that bucket has been used
Analyzing bucket sort

- Overall: $O(n+K)$
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when range, K, is smaller (or not much larger) than number of elements, n
 - Don’t spend time doing lots of comparisons of duplicates!
- Bad when K is much larger than n
 - Wasted space; wasted time during final linear $O(K)$ pass
 - If $K \sim n^2$, not really linear anymore
Bucket Sort with Data

- Most real lists aren’t just #’s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end in O(1) (say, keep a pointer to last element)

```
count array
1          Happy Feet
2
3          Harry Potter
4
5          Casablanca  Star Wars
```

- Example: Movie ratings; scale 1-5; 1=bad, 5=excellent
 Input=
 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original Trilogy
 1: Happy Feet

Result: 1: Happy Feet, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- This result is ‘stable’; Casablanca still before Star Wars
Radix sort

- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128

- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
 - After \(k \) passes, the last \(k \) digits are sorted

- Aside: Origins go back to the 1890 U.S. census
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>721</td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>537</td>
</tr>
<tr>
<td></td>
<td>478</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td>38</td>
<td>9</td>
</tr>
</tbody>
</table>

Input: 478 537 9 721 3 38 143 67

First pass:
- bucket sort by ones digit
- Iterate through and collect into list
- List is sorted by first digit

Order now: 721 3 143 537 67 478 38 9
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>721</td>
<td>537</td>
<td>143</td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>38</td>
<td></td>
<td></td>
<td>67</td>
<td></td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order was: 721 3 143 537 67 478 38 9

Second pass: stable bucket sort by tens digit

If we chop off the 100’s place, these #’s are sorted

Order now: 3 9 721 537 38 143 67 478
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td>478</td>
<td></td>
<td></td>
<td>721</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

Order was:
3
9
721
537
38
143
67
478

Order now:
3
9
38
67
143
478
537
721

Third pass:

stable bucket sort by 100s digit

Only 3 digits: We’re done
Analysis

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
 - Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = “Digits”: P
 - Ages of people: 3; Phone #: 10; Person’s name: ?

- Work per pass is 1 bucket sort: $O(B+n)$
 - Each pass is a Bucket Sort
- Total work is $O(P(B+n))$
 - We do ‘P’ passes, each of which is a Bucket Sort
Comparison

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Approximate run-time: $15 \times (52 + n)$
 - This is less than $n \log n$ only if $n > 33,000$
 - Of course, cross-over point depends on constant factors of the implementations plus P and B
 - And radix sort can have poor locality properties

- Not really practical for many classes of keys
 - Strings: Lots of buckets
Last word on sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for “below a cut-off” to help divide-and-conquer sorts

- $O(n \log n)$ sorts
 - heap sort, in-place but not stable nor parallelizable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies

- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons

- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases

- Best way to sort? It depends