CSE332: Data Abstractions

Lecture 10: More B-Trees

Tyler Robison
Summer 2010
B-Tree Review: Another dictionary

Overall idea:
- Large data sets won’t fit entirely in memory
- Disk access is slow
- Set up tree so we do one disk access per node in tree
- Then our goal is to keep tree shallow as possible
- Balanced binary tree is a good start, but we can do better than $\log_2 n$ height
- In an M-ary tree, height drops to $\log_M n$
 - Why not set M really really high? Height 1 tree…
 - Instead, set M so that each node fits in a disk block
B-Tree Review

- M-ary tree with room for L data items at each leaf
- All data kept at leaves
- Order property:
 Subtree between keys x and y contains only data that is $\geq x$ and $< y$ (notice the \geq)
- Balance property:
 All nodes and leaves at least half full, and all leaves at same height
- find and insert efficient
 - insert uses splitting to handle overflow, which may require splitting parent, and so on recursively

There are different variants of B-Trees you can use (adoption, etc.)

$M=3$, $L=3$

Horizontal: Internal, Vertical: Leaf
B-Tree Insertion Example

Insert(16)

What now?

Split the internal node (in this case, the root)

M = 3 L = 3
B-Tree Insertion Algorithm Overview

1. Traverse from the root to the proper leaf. Insert the data in its leaf in sorted order
2. If the leaf now has $L+1$ items, overflow!
 - Split the leaf into two leaves:
 - Attach the new child to the parent
3. If an internal node has $M+1$ children, overflow!
 - Split the node into two nodes
 - Attach the new child to the parent

Splitting at a node (step 3) could make the parent overflow too

 - So repeat step 3 up the tree until a node doesn’t overflow
 - If the root overflows, make a new root with two children
And Now for Deletion…

Easy case: Leaf still has enough data; just remove
Underflow in the leaf

\[M = 3 \quad L = 3 \]
Adoption: grab a data item from neighboring leaf
Uh-oh, neighbors at their minimum!

\[M = 3 \quad L = 3 \]
Merge the two nodes together. This causes underflow in the parent

\(M = 3 \quad L = 3 \)
Now grab a leaf node from parent’s neighbor

$M = 3 \quad L = 3$
Easy case again

\[M = 3 \quad L = 3 \]
Delete(18)

Leaf underflow; no neighbors with enough to steal from...

M = 3 L = 3
Merge leaves…

$M = 3 \quad L = 3$
Can’t steal leaf from parent’s neighbor; too few leaves. Instead merge parent w/ parent’s neighbor

$M = 3 \quad L = 3$
Which causes an underflow in root; replace root

$M = 3$ $L = 3$
Deletion Algorithm

1. Remove the data from its leaf

2. If the leaf now has $\lceil L/2 \rceil - 1$, underflow!
 - If a neighbor has $> \lceil L/2 \rceil$ items, adopt and update parent
 - Else merge node with neighbor
 - Guaranteed to have a legal number of items
 - Parent now has one less node

3. If step (2) caused the parent to have $\lceil M/2 \rceil - 1$ children, underflow!
 - ...
Deletion algorithm continued

3. If an internal node has \(\lceil \frac{M}{2} \rceil - 1 \) children
 - If a neighbor has > \(\lceil \frac{M}{2} \rceil \) items, adopt and update parent
 - Else merge node with neighbor
 - Guaranteed to have a legal number of items
 - Parent now has one less node, may need to continue up the tree

If we merge all the way up through the root, that’s fine unless the root went from 2 children to 1
 - In that case, delete the root and make child the root
 - This is the only case that decreases tree height
Efficiency of delete

- Find correct leaf: \(O(\log_2 M \log_M n)\)
- Remove from leaf: \(O(L)\)
- Adopt/merge from/with neighbor leaf: \(O(L)\)
- Adopt or merge all the way up to root: \(O(M \log_M n)\)

Worst-case Delete: \(O(L + M \log_M n)\)

But it’s not that bad:
- Merges are not that common
- Remember disk accesses were the name of the game: \(O(\log_M n)\)
Insert vs delete comparison

Insert
- Find correct leaf: $O(\log_2 M \log_M n)$
- Insert in leaf: $O(L)$
- Split leaf: $O(L)$
- Split parents all the way up to root: $O(M \log_M n)$

Delete
- Find correct leaf: $O(\log_2 M \log_M n)$
- Remove from leaf: $O(L)$
- Adopt/merge from/with neighbor leaf: $O(L)$
- Adopt or merge all the way up to root: $O(M \log_M n)$
Aside: Limitations of B-Trees in Java

For most of our data structures, we have encouraged writing high-level, reusable code, such as in Java with generics.

It is worth knowing enough about “how Java works” to understand why this is probably a bad idea for B-Trees:

- Assuming our goal is efficient number of disk accesses
- Java has many advantages, but it wasn’t designed for this
- If you just want a balanced tree with worst-case logarithmic operations, no problem

The problem is extra levels of indirection…
One approach

Even if we assume data items have `int` keys, you cannot get the data representation you want for “really big data”

```java
interface Keyed<E> {
    int key(E);
}
class BTreeNode<E> implements Keyed<E>> {
    static final int M = 128;
    int[] keys = new int[M-1];
    BTreeNode<E>[] children = new BTreeNode[M];
    int numChildren = 0;
    ...
}
class BTreeLeaf<E> {
    static final int L = 32;
    E[] data = (E[]) new Object[L];
    int numItems = 0;
    ...
}
```
What that looks like

BTreeNode (3 objects with “header words”)

BTreeLeaf (data objects not in contiguous memory)

All the red references indicate unnecessary indirection
The moral

- The whole idea behind B trees was to keep related data in contiguous memory
 - But that’s “the best you can do” in Java
 - Again, the advantage is generic, reusable code
 - But for your performance-critical web-index, not the way to implement your B-Tree for terabytes of data
 - C# may have better support for “flattening objects into arrays”
 - C and C++ definitely do
 - Levels of indirection matter!
Conclusion: Balanced Trees

- **Balanced** trees make good dictionaries because they guarantee logarithmic-time `find`, `insert`, and `delete`
 - Essential and beautiful computer science
 - But only if you can maintain balance within the time bound

- **AVL trees** maintain balance by tracking height and allowing all children to differ in height by at most 1

- **B trees** maintain balance by keeping nodes at least half full and all leaves at same height

- Other great balanced trees (see text for details)
 - **Splay trees**: self-adjusting; amortized guarantee; no extra space for height information
 - **Red-black trees**: all leaves have depth within a factor of 2