
CSE332: Data Abstractions

About the Final

Tyler Robison

Summer 2010

1



Final Logistics

2

 Final on Friday

 Usual time: 10:50

 Usual room: Here (EEB 026)

 One hour

 No notes, no books; calculators ok (but not really 

needed)

 Info on website under ‘Exams’



Topics (short list)

3

 Sorting

 Graphs

 Parallelization

 Concurrency

 Amortized Analysis

 NP NOT covered

 Material in Midterm NOT covered



Section Tomorrow

4

 Review problems

 Get some more practice with material

 Questions

 Last (?) opportunity for re-grading on hw/project



Preparing for the Exam

5

 Homework a good indication of what could be on 

exam

 Check out previous quarters’ exams

 Length differs

 326 ones differ quite a bit

 Final info site has links

 Make sure you:

 Understand the key concepts

 Can perform the key algorithms



Sorting Topics

6

 Know
 Simple sorts

 Heap Sort

 Merge Sort

 Quick Sort

 Bucket Sort & Radix Sort

 Know run-times

 Know how to carry out the sort

 Lower Bound for Comparison Sort
 Won’t be ask to give full proof

 But may be asked to use similar techniques

 Be familiar with the ideas



Graph Topics

7

 Graph Basics
 Definition; weights; directedness; degree

 Paths; cycles

 Connectedness (directed vs undirected)

 ‘Tree’ in a graph sense

 DAGs

 Graph Representations
 Adjacency List

 Adjacency Matrix

 What each is; how to use it

 Graph Traversals
 Breadth-First

 Depth-First

 What data structures are associated with each?



Graph Topics

8

 Topological Sort

 Dijkstra’s Algorithm

 Doesn’t play nice with negative weights

 Minimum Spanning Trees

 Prim’s Algorithm

 Kruskal’s Algorithm

 Know algorithms

 Know run-times



Parallelism

9

 Fork-join parallelism
 Know the concept; diff. from making lots of threads

 Be able to write pseudo-code

 Reduce: parallel sum, multiply, min, find, etc.

 Map: bit vector, string length, etc.

 Work & span definitions

 Speed-up & parallelism definitions

 Justification for run-time, given tree

 Justification for ‘halving’ each step

 Amdahl’s Law

 Parallel Prefix
 Technique

 Span

 Uses: Parallel prefix sum, filter, etc.

 Parallel Sorting



Concurrency

10

 Race conditions

 Data races

 Synchronizing your code
 Locks, Reentrant locks

 Java’s ‘synchronize’ statement

 Readers/writer locks

 Deadlock

 Issues of critical section size

 Issues of lock scheme granularity – coarse vs fine

 Knowledge of bad interleavings

 Condition variables

 Be able to write pseudo-code for Java threads, locks & 
condition variables



Amortized Analysis

11

 To have an Amortized Bound of O(f(n)):

 There does not exist a series of M operations with run-

time worse than O(M*f(n))

 Amortized vs average case

 To prove: prove that no series of operations can do 

worse than O(M*f(n))

 To disprove: find a series of operations that’s worse


