
CSE332: Data Abstractions

About the Final

Tyler Robison

Summer 2010

1



Final Logistics

2

 Final on Friday

 Usual time: 10:50

 Usual room: Here (EEB 026)

 One hour

 No notes, no books; calculators ok (but not really 

needed)

 Info on website under ‘Exams’



Topics (short list)

3

 Sorting

 Graphs

 Parallelization

 Concurrency

 Amortized Analysis

 NP NOT covered

 Material in Midterm NOT covered



Section Tomorrow

4

 Review problems

 Get some more practice with material

 Questions

 Last (?) opportunity for re-grading on hw/project



Preparing for the Exam

5

 Homework a good indication of what could be on 

exam

 Check out previous quarters’ exams

 Length differs

 326 ones differ quite a bit

 Final info site has links

 Make sure you:

 Understand the key concepts

 Can perform the key algorithms



Sorting Topics

6

 Know
 Simple sorts

 Heap Sort

 Merge Sort

 Quick Sort

 Bucket Sort & Radix Sort

 Know run-times

 Know how to carry out the sort

 Lower Bound for Comparison Sort
 Won’t be ask to give full proof

 But may be asked to use similar techniques

 Be familiar with the ideas



Graph Topics

7

 Graph Basics
 Definition; weights; directedness; degree

 Paths; cycles

 Connectedness (directed vs undirected)

 ‘Tree’ in a graph sense

 DAGs

 Graph Representations
 Adjacency List

 Adjacency Matrix

 What each is; how to use it

 Graph Traversals
 Breadth-First

 Depth-First

 What data structures are associated with each?



Graph Topics

8

 Topological Sort

 Dijkstra’s Algorithm

 Doesn’t play nice with negative weights

 Minimum Spanning Trees

 Prim’s Algorithm

 Kruskal’s Algorithm

 Know algorithms

 Know run-times



Parallelism

9

 Fork-join parallelism
 Know the concept; diff. from making lots of threads

 Be able to write pseudo-code

 Reduce: parallel sum, multiply, min, find, etc.

 Map: bit vector, string length, etc.

 Work & span definitions

 Speed-up & parallelism definitions

 Justification for run-time, given tree

 Justification for ‘halving’ each step

 Amdahl’s Law

 Parallel Prefix
 Technique

 Span

 Uses: Parallel prefix sum, filter, etc.

 Parallel Sorting



Concurrency

10

 Race conditions

 Data races

 Synchronizing your code
 Locks, Reentrant locks

 Java’s ‘synchronize’ statement

 Readers/writer locks

 Deadlock

 Issues of critical section size

 Issues of lock scheme granularity – coarse vs fine

 Knowledge of bad interleavings

 Condition variables

 Be able to write pseudo-code for Java threads, locks & 
condition variables



Amortized Analysis

11

 To have an Amortized Bound of O(f(n)):

 There does not exist a series of M operations with run-

time worse than O(M*f(n))

 Amortized vs average case

 To prove: prove that no series of operations can do 

worse than O(M*f(n))

 To disprove: find a series of operations that’s worse


