

CSE332: Data Abstractions
Lecture 9: B Trees

Dan Grossman Spring 2010

Our goal

- Problem: A dictionary with so much data most of it is on disk
- Desire: A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size
- A key idea: Increase the branching factor of our tree

Spring 2010 CSE332: Data Abstractions

2

M-ary Search Tree

- Build some sort of search tree with branching factor M:
 - Have an array of sorted children (Node[])
 - Choose *M* to fit snugly into a disk block (1 access for array)

Perfect tree of height h has $(M^{h+1}-1)/(M-1)$ nodes (textbook, page 4)

hops for find: If balanced, using $log_M n$ instead of $log_2 n$

- If M=256, that's an 8x improvement
- Example: M = 256 and $n = 2^{40}$ that's 5 instead of 40

Runtime of find if balanced: $O(\log_2 M \log_M n)$ (binary search children)

Problems with M-ary search trees

- What should the order property be?
- How would you rebalance (ideally without more disk accesses)?
- Any "useful" data at the internal nodes takes up some disk-block space without being used by finds moving past it

So let's use the branching-factor idea, but for a different kind of balanced tree

- Not a binary search tree
- But still logarithmic height for any M > 2

Spring 2010 CSE332: Data Abstractions 3 Spring 2010 CSE332: Data Abstractions 4

B+ Trees (we and the book say "B Trees")

 Each internal node has room for up to M-1 keys and M children

- No other data; all data at the leaves!
- · Order property:

Subtree **between** keys x and y contains only data that is $\geq x$ and $\langle y \rangle$ (notice the \geq)

- Leaf nodes have up to L sorted data items
- As usual, we'll ignore the "along for the ride" data in our examples
 - Remember no data at non-leaves

Spring 2010

CSE332: Data Abstractions

5

Find

- This is a new kind of tree
 - We are used to data at internal nodes
- But find is still an easy root-to-leaf recursive algorithm
 - At each internal node do binary search on the ≤ M-1 keys
 - At the leaf do binary search on the ≤ L data items
- But to get logarithmic running time, we need a balance condition...

Spring 2010 CSE332: Data Abstractions 6

Structure Properties

- · Root (special case)
 - If tree has $\leq L$ items, root is a leaf (very strange case)
 - Else has between 2 and M children
- Internal nodes
 - Have between $\lceil M/2 \rceil$ and M children, i.e., at least half full
- · Leaf nodes
 - All leaves at the same depth
 - Have between $\lfloor L/2 \rfloor$ and L data items, i.e., at least half full

(Any M > 2 and L will work; picked based on disk-block size)

Example

Suppose M=4 (max children) and L=5 (max items at leaf)

- All internal nodes have at least 2 children
- All leaves have at least 3 data items (only showing keys)
- All leaves at same depth

Spring 2010 CSE332: Data Abstractions 8

Balanced enough

Not hard to show height h is logarithmic in number of data items n

- Let M > 2 (if M = 2, then a list tree is legal no good!)
- Because all nodes are at least half full (except root may have only 2 children) and all leaves are at the same level, the minimum number of data items n for a height h>0 tree is...

Exponential in height because M/2 > 1

Spring 2010 CSE332: Data Abstractions

B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

- Maximum height of AVL tree?
- Maximum height of B tree with *M*=128 and *L*=64?

Spring 2010 CSE332: Data Abstractions 10

B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

- Maximum height of AVL tree?
 - Recall S(h) = 1 + S(h-1) + S(h-2)
 - lecture7.xlsx reports: 47
- Maximum height of B tree with *M*=128 and *L*=64?
 - Recall $(2 + \lceil M/2 \rceil^{h-1}) \lceil L/2 \rceil$
 - lecture9.xlsx reports: 5 (and 4 is more likely)
 - Also not difficult to compute via algebra

Disk Friendliness

What makes B trees so disk friendly?

- Many keys stored in one node
 - All brought into memory in one disk access
 - Pick M wisely. Example: block=1KB, then M=128
 - Makes the binary search over M-1 keys totally worth it
- Internal nodes contain only keys
 - Any find wants only one data item
 - So only bring one leaf of data items into memory
 - Data-item size doesn't affect what M is

Spring 2010 CSE332: Data Abstractions 11 Spring 2010 CSE332: Data Abstractions 12

Maintaining balance

- So this seems like a great data structure (and it is)
- But we haven't implemented the other dictionary operations yet
 - insert
 - delete
- As with AVL trees, the hard part is maintaining structure properties
 - Example: for insert, there might not be room at the correct leaf

Spring 2010

CSE332: Data Abstractions

13

15

Building a B-Tree (insertions)

The empty B-Tree

$$M = 3 L = 3$$

Spring 2010

CSE332: Data Abstractions

14

18 18 18 32 Insert(32) Insert(36) **30** 14 14 14 **30 30 36 32** Insert(15) 18 14 **30 36** M = 3 L = 315

CSE332: Data Abstractions

Spring 2010

CSE332: Data Abstractions

16

CSE332: Data Abstractions

18

Insertion Algorithm

- 1. Insert the data in its leaf in sorted order
- 2. If the leaf now has L+1 items, overflow!
 - Split the leaf into two nodes:
 - Original leaf with \[(L+1)/2\] smaller items
 - New leaf with $\lfloor (L+1)/2 \rfloor = \lceil L/2 \rceil$ larger items
 - Attach the new child to the parent
 - Adding new key to parent in sorted order
- 3. If step (2) caused the parent to have M+1 children, overflow!

- *...*

Insertion algorithm continued

3. If an internal node has *M*+1 children

Spring 2010

- Split the node into two nodes
 - Original node with \[(M+1)/2 \] smaller items
 - New node with $\lfloor (M+1)/2 \rfloor = \lceil M/2 \rceil$ larger items
- Attach the new child to the parent
 - · Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too

- So repeat step 3 up the tree until a node doesn't overflow
- If the root overflows, make a new root with two children
 - This is the only case that increases the tree height

Spring 2010 CSE332: Data Abstractions 19 Spring 2010 CSE332: Data Abstractions 20

Efficiency of insert

• Find correct leaf: $O(\log_2 M \log_M n)$

Insert in leaf: O(L)Split leaf: O(L)

• Split parents all the way up to root: O(M log_M n)

Total: $O(L + M \log_M n)$

But it's not that bad:

- Splits are not that common (have to fill up nodes)

- Remember disk accesses were the name of the game: $O(\log_M n)$

21

Spring 2010 CSE332: Data Abstractions