The AVL Tree Data Structure

Structural properties
 1. Binary tree property
 2. Balance property:
 balance of every node is between -1 and 1

Result:
 Worst-case depth is $O(\log n)$

Ordering property
 - Same as for BST

AVL Tree Deletion

- Similar to insertion: do the delete and then rebalance
 - Rotations and double rotations
 - Imbalance may propagate upward so rotations at multiple nodes
 along path to root may be needed (unlike with insert)
- Simple example: a deletion on the right causes the left-left grandchild
to be too tall
 - Call this the left-left case, despite deletion on the right
 - $\text{insert}(6) \text{ insert}(3) \text{ insert}(7) \text{ insert}(1) \text{ delete}(7)$

Properties of BST delete

We first do the normal BST deletion:
 - 0 children: just delete it
 - 1 child: delete it, connect child to parent
 - 2 children: put successor in your place, delete successor leaf

Which nodes' heights may have changed:
 - 0 children: path from deleted node to root
 - 1 child: path from deleted node to root
 - 2 children: path from deleted successor leaf to root

Will rebalance as we return along the “path in question” to the root
Case #1 Left-left due to right deletion

- Start with some subtree where if right child becomes shorter we are unbalanced due to height of left-left grandchild

- A delete in the right child could cause this right-side shortening

Case #2: Left-right due to right deletion

- Same double rotation when an insert in the left-right grandchild caused imbalance due to c becoming taller

- But here the “height” at the top decreases, so more rebalancing farther up the tree might still be necessary

No third right-deletion case needed

So far we have handled these two cases: left-left and left-right

But what if the two left grandchildren are now both too tall ($h+1$)?

- Then it turns out left-left solution still works
- The children of the “new top node” will have heights differing by 1 instead of 0, but that’s fine
And the other half

- Naturally there are two mirror-image cases not shown here
 - Deletion in left causes right-right grandchild to be too tall
 - Deletion in left causes right-left grandchild to be too tall
 - (Deletion in left causes both right grandchildren to be too tall, in which case the right-right solution still works)

- And, remember, “lazy deletion” is a lot simpler and often sufficient in practice

Pros and Cons of AVL Trees

Arguments for AVL trees:
1. All operations logarithmic worst-case because trees are always balanced.
2. The height balancing adds no more than a constant factor to the speed of insert and delete.

Arguments against AVL trees:
1. Difficult to program & debug
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. Most large searches are done in database-like systems on disk and use other structures (e.g., B-trees, our next data structure)
5. If amortized (later, I promise) logarithmic time is enough, use splay trees (skipping, see text)

Now what?

- We have a data structure for the dictionary ADT that has worst-case $O(\log n)$ behavior
 - One of several interesting/fantastic balanced-tree approaches
- We are about to learn another balanced-tree approach: B Trees
- First, to motivate why B trees are better for really large dictionaries (say, over 1GB = 2^{30} bytes), need to understand some memory-hierarchy basics
 - Don’t always assume “every memory access has an unimportant $O(1)$ cost”
 - Learn more in CSE351/333/471 (and CSE378), focus here on relevance to data structures and efficiency

A typical hierarchy

“Every desktop/laptop/server is different” but here is a plausible configuration these days

- CPU
 - instructions (e.g., addition): 2^{30}/sec
 - get data in L1: 2^{29}/sec = 2 insns
- L2 Cache: 2^{21}
 - get data in L2: 2^{25}/sec = 30 insns
- Main memory: 2^{31}
 - get data in main memory: 2^{22}/sec = 250 insns
- Disk: $1TB = 2^{40}$
 - get data from “new place” on disk: 2^{7}/sec = 8,000,000 insns
 - “streamed”: 2^{18}/sec
Morals
It is much faster to do: Than:
5 million arithmetic ops 1 disk access
2500 L2 cache accesses 1 disk access
400 main memory accesses 1 disk access

Why are computers built this way?
– Physical realities (speed of light, closeness to CPU)
– Cost (price per byte of different technologies)
– Disks get much bigger not much faster
 • Spinning at 7200 RPM accounts for much of the slowness and unlikely to spin faster in the future
– Speedup at higher levels makes lower levels relatively slower
– Later in the course: more than 1 CPU!

“Fuggedaboutit”, usually

The hardware automatically moves data into the caches from main memory for you
– Replacing items already there
– So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to open a file or database to access some data)

So most code “just runs” but sometimes it’s worth designing algorithms / data structures with knowledge of memory hierarchy
– And when you do, you often need to know one more thing…

Block/line size
• Moving data up the memory hierarchy is slow because of latency (think distance-to-travel)
 – May as well send more than just the one int/reference asked for (think “giving friends a car ride doesn’t slow you down”)
 – Sends nearby memory because:
 • It’s easy
 • And likely to be asked for soon (think fields/arrays)
• The amount of data moved from disk into memory is called the “block" size or the "(disk) page" size
 – Not under program control
• The amount of data moved from memory into cache is called the “line" size
 – Not under program control

Connection to data structures
• An array benefits more than a linked list from block moves
 – Language (e.g., Java) implementation can put the list nodes anywhere, whereas array is typically contiguous memory
• Suppose you have a queue to process with 2^{23} items of 2^7 bytes each on disk and the block size is 2^{10} bytes
 – An array implementation needs 2^{20} disk accesses
 – If “perfectly streamed”, > 16 seconds
 – If "random places on disk", 8000 seconds (> 2 hours)
 – A list implementation in the worst case needs 2^{23} “random" disk accesses (> 16 hours) – probably not that bad
• Note: “array” doesn’t mean “good”
 – Binary heaps “make big jumps” to percolate (different block)
BSTs?

- Since looking things up in balanced binary search trees is \(O(\log n) \), even for \(n = 2^{39} \) (512GB) we don’t have to worry about minutes or hours
- Still, number of disk accesses matters
 - AVL tree could have height of 55 (see lecture7.xlsx)
 - So each find could take about 0.5 seconds or about 100 finds a minute
 - Most of the nodes will be on disk: the tree is shallow, but it is still many gigabytes big so the tree cannot fit in memory
 - Even if memory holds the first 25 nodes on our path, we still need 30 disk accesses

Note about numbers; moral

- All the numbers in this lecture are “ballpark” “back of the envelope” figures
- Even if they are off by, say, a factor of 5, the moral is the same: If your data structure is mostly on disk, you want to minimize disk accesses
- A better data structure in this setting would exploit the block size and relatively fast memory access to avoid disk accesses…