



CSE332: Data Abstractions

Lecture 6: Dictionaries; Binary Search Trees

Dan Grossman Spring 2010

insert(djg, ....)

find(trobison)

Tyler, Robison, ...

#### Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

#### ADTs so far:

1. Stack: push, pop, isEmpty, ...

2. Queue: enqueue, dequeue, isEmpty, ...

3. Priority queue: insert, deleteMin, ...

#### Next:

4. Dictionary (a.k.a. Map): associate keys with values

- probably the most common, way more than priority queue

Spring 2010 CSE332: Data Abstractions 2

## The Dictionary (a.k.a. Map) ADT

- Data:
  - set of (key, value) pairs
  - keys must be comparable
- Operations:
  - insert(key,value)
  - find(key)
  - delete(key)

- ...

Will tend to emphasize the keys, don't forget about the stored values

- djg Dan
- Grossman
- trobison Tyler Robison
- •••
- sandona1 Brent Sandona

...

## Comparison: The Set ADT

The Set ADT is like a Dictionary without any values

- A key is present or not (no repeats)

For find, insert, delete, there is little difference

- In dictionary, values are "just along for the ride"
- So same data-structure ideas work for dictionaries and sets

But if your Set ADT has other important operations this may not hold

- union, intersection, is\_subset
- notice these are binary operators on sets

Spring 2010 CSE332: Data Abstractions 3 Spring 2010 CSE332: Data Abstractions 4

## Dictionary data structures

Will spend the next 1.5-2 weeks implementing dictionaries with three different data structures

- 1. AVL trees
  - Binary search trees with guaranteed balancing
- 2. B-Trees
  - Also always balanced, but different and shallower
- 3. Hashtables
  - Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

But first some applications and less efficient implementations...

Spring 2010 CSE332: Data Abstractions 5

## Simple implementations

For dictionary with *n* key/value pairs

insert find delete

- Unsorted linked-list
- Unsorted array
- · Sorted linked list
- Sorted array

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

#### A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently

Lots of programs do that!

Networks: router tables
Operating systems: page tables
Compilers: symbol tables

Databases: dictionaries with other nice properties
 Search: inverted indexes, phone directories, ...

Biology: genome maps

• ...

Spring 2010 CSE332: Data Abstractions 6

## Simple implementations

For dictionary with *n* key/value pairs

| Unsorted linked-list | insert<br>O(1) | <b>find</b> <i>O</i> ( <i>n</i> ) | delete<br>O(n) |
|----------------------|----------------|-----------------------------------|----------------|
| Unsorted array       | O(1)           | O(n)                              | O( <i>n</i> )  |
| Sorted linked list   | O( <i>n</i> )  | O(n)                              | O(n)           |
| Sorted array         | O(n)           | O(log <i>n</i> )                  | O( <i>n</i> )  |

We'll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced

Spring 2010 CSE332: Data Abstractions 7 Spring 2010 CSE332: Data Abstractions

# Lazy Deletion

| 10       | 12 | 24       | 30       | 41 | 42       | 44 | 45       | 50       |
|----------|----|----------|----------|----|----------|----|----------|----------|
| <b>✓</b> | *  | <b>✓</b> | <b>✓</b> | ✓  | <b>✓</b> | *  | <b>✓</b> | <b>✓</b> |

A general technique for making delete as fast as find:

- Instead of actually removing the item just mark it deleted

#### Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

#### Minuses:

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- find O(log m) time where m is data-structure size (okay)
- May complicate other operations

Spring 2010 CSE332: Data Abstractions 9

## Binary Trees

- Binary tree is empty or
  - a root (with data)
  - a left subtree (maybe empty)
  - a right subtree (maybe empty)
- Representation:



 For a dictionary, data will include a key and a value



## Some tree terms (mostly review)

- · There are many kinds of trees
  - Every binary tree is a tree
  - Every list is kind of a tree (think of "next" as the one child)
- There are many kinds of binary trees
  - Every binary min heap is a binary tree
  - Every binary search tree is a binary tree
- · A tree can be balanced or not
  - A balanced tree with n nodes has a height of  $O(\log n)$
  - Different tree data structures have different "balance conditions" to achieve this

Spring 2010 CSE332: Data Abstractions 10

## Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:

Spring 2010 CSE332: Data Abstractions 11 Spring 2010 CSE332: Data2Abstractions

## Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height *h*:

- max # of leaves: 2<sup>th</sup>

- max # of nodes:  $2^{(h+1)} - 1$ 

– min # of leaves:

- min # of nodes: h+1

For n nodes, we cannot do better than  $O(\log n)$  height, and we want to avoid O(n) height

Spring 2010 CSE332: Data Abstractions 13

# Calculating height

What is the height of a tree with root r?

```
int treeHeight(Node root) {
     ???
}
```

Spring 2010 CSE332: Data Abstractions 14

## Calculating height

What is the height of a tree with root r?

Running time for tree with n nodes: O(n) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion's call stack

## Tree Traversals

A traversal is an order for visiting all the nodes of a tree

• Pre-order. root, left subtree, right subtree

• In-order. left subtree, root, right subtree

• Post-order: left subtree, right subtree, root



(an expression tree)

Spring 2010 CSE332: Data Abstractions 15 Spring 2010 CSE332: Data Abstractions 16

### More on traversals

```
void inOrdertraversal(Node t){
  if(t != null) {
    traverse(t.left);
    process(t.element);
    traverse(t.right);
  }
}
```

#### Sometimes order doesn't matter

· Example: sum all elements

#### Sometimes order matters

- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)

Spring 2010

Spring 2010

CSE332: Data Abstractions



| $\overline{}$ |   |   |
|---------------|---|---|
|               | В |   |
|               |   | D |
|               |   | Е |
|               | С |   |
|               |   | F |
|               |   | G |
|               |   |   |

17

# Binary Search Tree

- Structural property ("binary")
  - each node has ≤ 2 children
  - result: keeps operations simple
- Order property
  - all keys in left subtree smaller than node's key
  - all keys in right subtree larger than node's key
  - result: easy to find any given key



Spring 2010

CSE332: Data Abstractions

18

## Are these BSTs?



## Are these BSTs?



CSE332: Data Abstractions 19 Spring 2010 CSE332: Data Abstractions 20

## Find in BST, Recursive



```
Data find(Key key, Node root){
  if(root == null)
    return null;
  if(key < root.key)
    return find(key,root.left);
  if(key > root.key)
    return find(key,root.right);
  return root.data;
}
```

### Find in BST, Iterative



```
Data find(Key key, Node root){
  while(root != null
     && root.key != key) {
   if(key < root.key)
    root = root.left;
  else(key > root.key)
    root = root.right;
  }
  if(root == null)
    return null;
  return root.data;
}
```

Spring 2010

CSE332: Data Abstractions

21

CSE332: Data Abstractions

22

# Other "finding operations"

- Find minimum node
  - "the liberal algorithm"
- Find maximum node
  - "the conservative algorithm"
- Find *predecessor* of a non-leaf
- Find successor of a non-leaf
- Find predecessor of a leaf
- · Find successor of a leaf



### Insert in BST

Spring 2010



insert(13)
insert(8)

insert(31)

(New) insertions happen only at leaves – easy!

Spring 2010 CSE332: Data Abstractions 23 Spring 2010 CSE332: Data Abstractions 24

### Deletion in BST



Why might deletion be harder than insertion?

Spring 2010 CSE332: Data Abstractions

## Deletion

- Removing an item disrupts the tree structure
- Basic idea: **find** the node to be removed, then "fix" the tree so that it is still a binary search tree
- · Three cases:
  - node has no children (leaf)
  - node has one child
  - node has two children

Spring 2010 CSE332: Data Abstractions 26

## Deletion - The Leaf Case



### Deletion - The One Child Case



Spring 2010 CSE332: Data Abstractions 27 Spring 2010 CSE332: Data Abstractions 28

25

### Deletion - The Two Child Case



What can we replace 5 with?

Spring 2010 CSE332: Data Abstractions

## BuildTree for BST

- We had buildHeap, so let's consider buildTree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
  - If inserted in given order, what is the tree?
  - What big-O runtime for this kind of sorted input?

O(n²) Not a happy place

 Is inserting in the reverse order any better?

### Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

#### Options:

- successor from right subtree: findMin(node.right)
- predecessor from left subtree: findMax(node.left)
  - These are the easy cases of predecessor/successor

Now delete the original node containing *successor* or *predecessor* 

• Leaf or one child case – easy cases of delete!

Spring 2010 CSE332: Data Abstractions 30

#### BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- What we if could somehow re-arrange them
  - median first, then left median, right median, etc.

- 5, 3, 7, 2, 1, 4, 8, 6, 9

- What tree does that give us?

- What big-O runtime?

O(n log n), definitely better



Spring 2010 CSE332: Data Abstractions 31 Spring 2010 CSE332: Data Abstractions 32

29

#### Unbalanced BST

- Balancing a tree at build time is insufficient, as sequences of operations can eventually transform that carefully balanced tree into the dreaded list
- At that point, everything is O(n) and nobody is happy
  - find
  - insert
  - delete



Spring 2010

CSE332: Data Abstractions

33

#### Balanced BST

#### Observation

- BST: the shallower the better!
- For a BST with *n* nodes inserted in arbitrary order
  - Average height is O(log n) see text for proof
  - Worst case height is O(n)
- Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that

- 1. ensures depth is always  $O(\log n)$  strong enough!
- 2. is easy to maintain not too strong!

Spring 2010 CSE332: Data Abstractions 34

#### Potential Balance Conditions

1. Left and right subtrees of the *root* have equal number of nodes

Too weak!
Height mismatch example:

2. Left and right subtrees of the *root* have equal *height* 

Too weak!
Double chain example:



### Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

Too strong!
Only perfect trees (2<sup>n</sup> – 1 nodes)



4. Left and right subtrees of every node have equal *height* 

Too strong! Only perfect trees (2<sup>n</sup> – 1 nodes)

Spring 2010 CSE332: Data Abstractions 35 Spring 2010 CSE332: Data Abstractions 36

## The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: **balance**(node) = height(node.left) - height(node.right)

AVL property: for every node x,  $-1 \le balance(x) \le 1$ 

- · Ensures small depth
  - Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
- Easy (well, efficient) to maintain
  - Using single and double rotations

Spring 2010 CSE332: Data Abstractions 37

