Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:
1. Stack: push, pop, isEmpty, ...
2. Queue: enqueue, dequeue, isEmpty, ...
3. Priority queue: insert, deleteMin, ...

Next:
 - probably the most common, way more than priority queue

The Dictionary (a.k.a. Map) ADT

- Data:
 - set of (key, value) pairs
 - keys must be comparable

- Operations:
 - insert(key, value)
 - find(key)
 - delete(key)
 - ...

Will tend to emphasize the keys, don’t forget about the stored values

Comparison: The Set ADT

The Set ADT is like a Dictionary without any values
- A key is present or not (no repeats)

For find, insert, delete, there is little difference
 - In dictionary, values are “just along for the ride”
 - So same data-structure ideas work for dictionaries and sets

But if your Set ADT has other important operations this may not hold
 - union, intersection, is_subset
 - notice these are binary operators on sets
Dictionary data structures

Will spend the next 1.5-2 weeks implementing dictionaries with three different data structures

1. AVL trees
 - Binary search trees with guaranteed balancing
2. B-Trees
 - Also always balanced, but different and shallower
3. Hashables
 - Not tree-like at all

Skipping: Other balanced trees (red-black, splay)

But first some applications and less efficient implementations…

A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently
- Lots of programs do that!

- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Search: inverted indexes, phone directories, …
- Biology: genome maps
- …

Simple implementations

For dictionary with \(n \) key/value pairs

<table>
<thead>
<tr>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unsorted linked-list</td>
<td>(O(1))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>• Unsorted array</td>
<td>(O(1))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>• Sorted linked list</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>• Sorted array</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
</tr>
</tbody>
</table>

We’ll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced
Lazy Deletion

A general technique for making **delete** as fast as **find**:
- Instead of actually removing the item just mark it deleted

Plusses:
- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses:
- Extra space for the “is-it-deleted” flag
- Data structure full of deleted nodes wastes space
- **find** $O(\log m)$ time where m is data-structure size (okay)
- May complicate other operations

Some tree terms (mostly review)

- There are many kinds of trees
 - Every binary tree is a tree
 - Every list is kind of a tree (think of “next” as the one child)

- There are many kinds of binary trees
 - Every binary min heap is a binary tree
 - Every binary search tree is a binary tree

- A tree can be balanced or not
 - A balanced tree with n nodes has a height of $O(\log n)$
 - Different tree data structures have different “balance conditions” to achieve this

Binary Trees

- Binary tree is empty or
 - a root (with data)
 - a left subtree (maybe empty)
 - a right subtree (maybe empty)

- Representation:

```
   A
  /|
 / |
B C
```

- For a dictionary, data will include a key and a value

Binary Tree: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height \(h \):
- max # of leaves: \(2^h \)
- max # of nodes: \(2^{(h + 1)} - 1 \)
- min # of leaves: \(1 \)
- min # of nodes: \(h + 1 \)

For \(n \) nodes, we cannot do better than \(O(\log n) \) height, and we want to avoid \(O(n) \) height

Calculating height

What is the height of a tree with root \(r \)?

```java
int treeHeight(Node root) {
    if (root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
                    treeHeight(root.right));
}
```

Running time for tree with \(n \) nodes: \(O(n) \) – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes; much easier to use recursion’s call stack

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- **Pre-order**: root, left subtree, right subtree
- **In-order**: left subtree, root, right subtree
- **Post-order**: left subtree, right subtree, root

(an expression tree)
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        traverse(t.left);
        process(t.element);
        traverse(t.right);
    }
}
```

Sometimes order doesn’t matter
- Example: sum all elements

Sometimes order matters
- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)

Binary Search Tree

- Structural property (“binary”)
 - each node has ≤ 2 children
 - result: keeps operations simple

- Order property
 - all keys in left subtree smaller than node’s key
 - all keys in right subtree larger than node’s key
 - result: easy to find any given key

Are these BSTs?

Are these BSTs?
Find in BST, Recursive

```
Data find(Key key, Node root){
    if(root == null)
        return null;
    if(key < root.key)
        return find(key,root.left);
    if(key > root.key)
        return find(key,root.right);
    return root.data;
}
```

Find in BST, Iterative

```
Data find(Key key, Node root){
    while(root != null && root.key != key) {
        if(key < root.key)
            root = root.left;
        else(key > root.key)
            root = root.right;
    }
    if(root == null)
        return null;
    return root.data;
}
```

Other “finding operations”

- Find minimum node
 - “the liberal algorithm”
- Find maximum node
 - “the conservative algorithm”
- Find predecessor of a non-leaf
- Find successor of a non-leaf
- Find predecessor of a leaf
- Find successor of a leaf

Insert in BST

```
insert(13)
insert(8)
insert(31)
```

(New) insertions happen only at leaves – easy!
Deletion in BST

Why might deletion be harder than insertion?

Deletion

- Removing an item disrupts the tree structure
- Basic idea: find the node to be removed, then “fix” the tree so that it is still a binary search tree
- Three cases:
 - node has no children (leaf)
 - node has one child
 - node has two children

Deletion – The Leaf Case

delete(17)

Deletion – The One Child Case

delete(15)
Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:
- **successor** from right subtree: \(\text{findMin}(\text{node.right}) \)
- **predecessor** from left subtree: \(\text{findMax}(\text{node.left}) \)
 - These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor
- Leaf or one child case – easy cases of delete!

BuildTree for BST

- We had \(\text{buildHeap} \), so let’s consider \(\text{buildTree} \)
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 - If inserted in given order, what is the tree?
 - What big-O runtime for this kind of sorted input? \(O(n^2) \) **Not a happy place**
 - Is inserting in the reverse order any better?

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 - What we if could somehow re-arrange them
 - median first, then left median, right median, etc.
 - 5, 3, 7, 2, 1, 4, 8, 6, 9
 - What tree does that give us?
 - What big-O runtime?
 - \(O(n \log n) \), definitely better
Unbalanced BST

- Balancing a tree at build time is insufficient, as sequences of operations can eventually transform that carefully balanced tree into the dreaded list
- At that point, everything is $O(n)$ and nobody is happy
 - find
 - insert
 - delete

Balanced BST

Observation
- BST: the shallower the better!
- For a BST with n nodes inserted in arbitrary order
 - Average height is $O(\log n)$ – see text for proof
 - Worst case height is $O(n)$
- Simple cases such as inserting in key order lead to the worst-case scenario

Solution: Require a Balance Condition that
1. ensures depth is always $O(\log n)$ – strong enough!
2. is easy to maintain – not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
 - Too weak!
 - Height mismatch example:

2. Left and right subtrees of the root have equal height
 - Too weak!
 - Double chain example:

3. Left and right subtrees of every node have equal number of nodes
 - Too strong!
 - Only perfect trees ($2^n - 1$ nodes)

4. Left and right subtrees of every node have equal height
 - Too strong!
 - Only perfect trees ($2^n - 1$ nodes)
The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, \(-1 \leq \text{balance}(x) \leq 1\)

- Ensures small depth
 - Will prove this by showing that an AVL tree of height \(h\) must have a number of nodes exponential in \(h\)

- Easy (well, efficient) to maintain
 - Using single and double rotations