Review

- Priority Queue ADT: `insert` comparable object, `deleteMin`
- Binary heap data structure: Complete binary tree where each node has priority value greater than its parent
- $O(\text{height-of-tree}) = O(\log n)$ `insert` and `deleteMin` operations
 - `insert`: put at new last position in tree and percolate-up
 - `deleteMin`: remove root, put last element at root and percolate-down
- But: tracking the “last position” is painful and we can do better

Array Representation of Binary Trees

From node i:
- left child: $i \times 2$
- right child: $i \times 2 + 1$
- parent: $i / 2$

(wasting index 0 is convenient)

Judging the array implementation

Plusses:
- Non-data space: just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- For reasons you learn in CSE351 / CSE378, multiplying and dividing by 2 is very fast
- Last used position is just index `size`

Minuses:
- Same might-by-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”
Pseudocode: insert

Note this pseudocode inserts ints, not useful data with priorities

```c
void insert(int val) {
    if(size==arr.length-1) resize();
    size++;
    i=percolateUp(size,val);
    arr[i] = val;
}
```

```c
int percolateUp(int hole, int val) {
    while(hole > 1 && val < arr[hole/2]) {
        arr[hole] = arr[hole/2];
        hole = hole / 2;
    }
    return hole;
}
```

Example

1. insert: 16, 32, 4, 69, 105, 43, 2
2. deleteMin

Other operations

- **decreaseKey**: given pointer to object in priority queue (e.g., its array index), lower its priority value by \(p \)
 - Change priority and percolate up

- **increaseKey**: given pointer to object in priority queue (e.g., its array index), raise its priority value by \(p \)
 - Change priority and percolate down

- **remove**: given pointer to object, take it out of the queue
 - **decreaseKey** with \(p = \infty \), then **deleteMin**

Running time for all these operations?
Build Heap

- Suppose you started with \(n \) items to put in a new priority queue
 - Call this the `buildHeap` operation

- `create`, followed by \(n \) inserts works
 - Only choice if ADT doesn’t provide `buildHeap` explicitly
 - \(O(n \log n) \)

- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an \(O(n) \) algorithm called Floyd’s Method
 - Common issue in ADT design: how many specialized operations

Floyd’s Method

1. Use \(n \) items to make any complete tree you want
 - That is, put them in array indices 1,\ldots,n

2. Treat it as a heap by fixing the heap-order property
 - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```java
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
    }
}
```

Example

- In tree form for readability
 - Red for node not less than descendants
 - heap-order problem
 - Notice no leaves are red
 - Check/fix each non-leaf bottom-up (6 steps here)

- Happens to already be less than children (er, child)
Step 2
• Percolate down (notice that moves 1 up)

Step 3
• Another nothing-to-do step

Step 4
• Percolate down as necessary (steps 4a and 4b)

Step 5
Example

But is it right?

• “Seems to work”
 – Let’s prove it restores the heap property (correctness)
 – Then let’s prove its running time (efficiency)

Correctness

\[
\text{void buildHeap()} \{
\text{for} (i = \text{size}/2; i>0; i--) \{
\text{val = arr[i];}
\text{hole = percolateDown(i,val);}
\text{arr[hole] = val;}
\}
\}
\]

Loop Invariant: For all \(j \geq i\), \(\text{arr}[j]\) is less than its children
• True initially: If \(j > \text{size}/2\), then \(j\) is a leaf
 – Otherwise its left child would be at position > \text{size}
• True after one more iteration: loop body and \text{percolateDown}
 make \text{arr}[i] less than children without breaking the property
 for any descendants

So after the loop finishes, all nodes are less than their children

Efficiency

\[
\text{void buildHeap()} \{
\text{for} (i = \text{size}/2; i>0; i--) \{
\text{val = arr[i];}
\text{hole = percolateDown(i,val);}
\text{arr[hole] = val;}
\}
\}
\]

Easy argument: \text{buildHeap} is \(O(n \log n)\) where \(n\) is \text{size}
• \text{size}/2 loop iterations
• Each iteration does one \text{percolateDown}, each is \(O(\log n)\)

This is correct, but there is a more precise (“tighter”) analysis of the algorithm…
Efficiency

```plaintext
void buildHeap() {
    for (i = size/2; i > 0; i--) {
        val = arr[i];
        hole = percolateDown(i, val);
        arr[hole] = val;
    }
}
```

Better argument: `buildHeap` is $O(n)$ where n is `size`
- `size/2` total loop iterations: $O(n)$
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- $((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2$ (page 4 of Weiss)
 - So at most 2 (`size/2`) total percolate steps: $O(n)$

Lessons from `buildHeap`

- Without `buildHeap`, our ADT already let clients implement their own in $\theta(n \log n)$ worst case
 - Worst case is inserting lower priority values later
- By providing a specialized operation internally (with access to the data structure), we can do $O(n)$ worst case
 - Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
 - Correctness: Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was $O(n \log n)$
 - A “tighter” analysis shows same algorithm is $O(n)$

What we’re skipping (see text if curious)

- d-heaps: have d children instead of 2
 - Makes heaps shallower, useful for heaps too big for memory
 - The same issue arises for balanced binary search trees and we will study “B-Trees”

- Different data structures for priority queues that support a logarithmic time `merge` operation (impossible with binary heaps)
 - `merge`: given two priority queues, make one priority queue
 - How might you merge binary heaps:
 - If one heap is much smaller than the other?
 - If both are about the same size?