

CSE332: Data Abstractions

Lecture 4: Priority Queues

Dan Grossman Spring 2010

Priorities

- Assume each item has a "priority"
 - The lesser item is the one with the greater priority

insert

- So "priority 1" is more important than "priority 4"
- (Just a convention)
- Operations:
 - insert
 - deleteMin
 - create, is_empty, destroy
- Key property: deleteMin returns and deletes from the queue the item with greatest priority (lowest priority value)

23

deleteMin.

- Can resolve ties arbitrarily

A new ADT: Priority Queue

- Textbook Chapter 6
 - Will go back to binary search trees
 - Nice to see a new and surprising data structure first
- A priority queue holds compare-able data
 - Unlike stacks and queues need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - What this means can depend on your data
 - Much of course will require this: dictionaries, sorting
 - Integers are comparable, so will use them in examples
 - · But the priority queue ADT is much more general

Spring 2010 CSE332: Data Abstractions 2

Focusing on the numbers

- For simplicity in lecture, we'll often suppose items are just ints and the int is the priority
 - The same concepts without generic usefulness
 - So an operation sequence could be

insert 6

insert 5

x = deleteMin

- int priorities are common, but really just need comparable
- Not having "other data" is very rare
 - Example: print job is a priority and the file

Spring 2010 CSE332: Data Abstractions 3 Spring 2010 CSE332: Data Abstractions

Example

insert x1 with priority 5
insert x2 with priority 3
insert x3 with priority 4
a = deleteMin
b = deleteMin
insert x4 with priority 2
insert x5 with priority 6
C = deleteMin
d = deleteMin

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

Spring 2010 CSE332: Data Abstractions

More applications

- · "Greedy" algorithms
 - Will see an example when we study graphs in a few weeks
- Discrete event simulation (system modeling, virtual worlds, ...)
 - Simulate how state changes when events fire
 - Each event e happens at some time t and generates new events e1, ..., en at times t+t1, ..., t+tn
 - Naïve approach: advance "clock" by 1 unit at a time and process any events that happen then
 - Better:
 - Pending events in a priority queue (priority = time happens)
 - Repeatedly: deleteMin and then insert new events
 - · Effectively, "set clock ahead to next event"

Applications

Like all good ADTs, the priority queue arises often

- Sometimes "directly", sometimes less obvious
- Run multiple programs in the operating system
 - "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- Select most frequent symbols for data compression (cf. CSE143)
- Sort: insert all, then repeatedly deleteMin
 - Much like Project 1 uses a stack to implement reverse

Spring 2010 CSE332: Data Abstractions 6

Need a good data structure!

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas
 - All times worst-case; assume arrays "have room"

data insert algorithm / time deleteMin algorithm / time unsorted array unsorted linked list sorted circular array sorted linked list binary search tree

Spring 2010 CSE332: Data Abstractions 7 Spring 2010 CSE332: Data Abstractions

5

Need a good data structure!

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for *n* data items
 - All times worst-case; assume arrays "have room"

data	insert algorithm / tir	ne	deleteMin algorithm /	' time
unsorted array	add at end	O(1)	search	O(n)
unsorted linked list	add at front	O(1)	search	O(n)
sorted circular arra	y search / shift	O(<i>n</i>)	move front	O(1)
sorted linked list	remove at front	O(1)	put in right place	O(<i>n</i>)
binary search tree	put in right place	O(<i>n</i>)	leftmost	O(n)

Spring 2010 CSE332: Data Abstractions

Tree terms (review?)

The binary heap data structure implementing the priority queue ADT will be a *tree*, so worth establishing some terminology

descendents(node)

subtree(node)

More on possibilities

- If priorities are random, binary search tree will likely do better
 - $O(\log n)$ insert and $O(\log n)$ deleteMin on average
- But we are about to see a data structure called a "binary heap"
 - $O(\log n)$ insert and $O(\log n)$ deleteMin worst-case
 - Very good constant factors
 - If items arrive in random order, then insert is O(1) on average
- One more idea: if priorities are 0, 1, ..., k can use array of lists
 - insert: add to front of list at arr[priority], O(1)
 - deleteMin: remove from lowest non-empty list O(k)

Spring 2010 CSE332: Data Abstractions 10

Kinds of trees

Certain terms define trees with specific structure

- Binary tree: Each node has at most 2 children
- n-ary tree: Each node as at most n children
- Complete tree: Each row is completely full except maybe the bottom row, which is filled from left to right

Teaser: Later we'll learn a tree is a kind of directed graph with specific structure

Spring 2010 CSE332: Data Abstractions 11 Spring 2010 CSE332: Data Abstractions 12

Our data structure

Finally, then, a binary min-heap (or just binary heap or just heap) is:

- A complete tree the "structure property"
- For every (non-root) node the parent node's value is less than the node's value the "heap property" (not a binary search tree)

So:

- Where is the highest-priority item?
- What is the height of a heap with *n* items?

Spring 2010 CSE332: Data Abstractions

DeleteMin

1. Delete (and return) value at root node

13

Operations: basic idea

- findMin: return root.data
- deleteMin:
 - 1. answer = root.data
 - Move right-most node in last row to root to restore structure property
 - 3. "Percolate down" to restore heap property

- Put new node in next position on bottom row to restore structure property
- 2. "Percolate up" to restore heap property

Spring 2010 CSE332: Data Abstractions

2. Restore the Structure Property

- · We now have a "hole" at the root
 - Need to fill the hole with another value
- When we are done, the tree will have one less node and must still be complete

14

 Spring 2010
 CSE332: Data Abstractions
 15
 Spring 2010
 CSE332: Data Abstractions
 1

3. Restore the Heap Property

Percolate down:

- · Keep comparing with both children
- Move smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- What is the run time?

Spring 2010

CSE332: Data Abstractions

17

19

DeleteMin: Run Time Analysis

- Run time is O(height of heap)
- · A heap is a complete binary tree
- Height of a complete binary tree of *n* nodes? - height = $\lfloor \log_2(n) \rfloor$
- Run time of deleteMin is $O(\log n)$

Spring 2010 CSE332: Data Abstractions 18

Insert

- · Add a value to the tree
- Structure and heap order properties must still be correct afterwards

Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property

Maintain the heap property

Percolate up:

- Put new data in new location
- If parent larger, swap with parent, and continue

CSE332: Data Abstractions

- Done if parent ≤ item or reached root
- Run time?

Spring 2010

21

Insert: Run Time Analysis

- Like deleteMin, worst-case time proportional to tree height
 O(log n)
- But... deleteMin needs the "last used" complete-tree position and insert needs the "next to use" complete-tree position
 - If "keep a reference to there" then insert and deleteMin have to adjust that reference: O(log n) in worst case
 - Could calculate how to find it in O(log n) from the root given the size of the heap
 - But it's not easy
 - And then **insert** is always $O(\log n)$, promised O(1) on average (assuming random arrival of items)
- There's a "trick": don't represent complete trees with explicit edges!

Spring 2010 CSE332: Data Abstractions 22