A new ADT: Priority Queue

- Textbook Chapter 6
 - Will go back to binary search trees
 - Nice to see a new and surprising data structure first

- A priority queue holds compare-able data
 - Unlike stacks and queues need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - What this means can depend on your data
 - Much of course will require this: dictionaries, sorting
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general

Priorities

- Assume each item has a “priority”
 - The lesser item is the one with the greater priority
 - So “priority 1” is more important than “priority 4”
 - (Just a convention)

- Operations:
 - insert
 - deleteMin
 - create, is_empty, destroy

- Key property: deleteMin returns and deletes from the queue the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily

Focusing on the numbers

- For simplicity in lecture, we’ll often suppose items are just ints and the int is the priority
 - The same concepts without generic usefulness
 - So an operation sequence could be
 - insert 6
 - insert 5
 - x = deleteMin
 - int priorities are common, but really just need comparable
 - Not having “other data” is very rare
 - Example: print job is a priority and the file
Example

- Insert x_1 with priority 5
- Insert x_2 with priority 3
- Insert x_3 with priority 4
- $a = \text{deleteMin}$
- $b = \text{deleteMin}$
- Insert x_4 with priority 2
- Insert x_5 with priority 6
- $c = \text{deleteMin}$
- $d = \text{deleteMin}$

- Analogy: `insert` is like `enqueue`, `deleteMin` is like `dequeue`
 - But the whole point is to use priorities instead of FIFO

Applications

Like all good ADTs, the priority queue arises often
 - Sometimes "directly", sometimes less obvious

- Run multiple programs in the operating system
 - "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- Select print jobs in order of decreasing length?
- Forward network packets in order of urgency
- Select most frequent symbols for data compression (cf. CSE143)
- Sort: `insert` all, then repeatedly `deleteMin`
 - Much like Project 1 uses a stack to implement reverse

More applications

- "Greedy" algorithms
 - Will see an example when we study graphs in a few weeks
- Discrete event simulation (system modeling, virtual worlds, …)
 - Simulate how state changes when events fire
 - Each event e happens at some time t and generates new events e_1, e_2, e_n at times $t+t_1$, $t+t_2$, $t+t_n$
 - Naïve approach: advance "clock" by 1 unit at a time and process any events that happen then
 - Better:
 - Pending events in a priority queue (priority = time happens)
 - Repeatedly: `deleteMin` and then `insert` new events
 - Effectively, "set clock ahead to next event"

Need a good data structure!

- Will show an efficient, non-obvious data structure for this ADT
 - But first let’s analyze some "obvious" ideas
 - All times worst-case; assume arrays "have room"

 - `data` `insert` algorithm / time `deleteMin` algorithm / time
 - `unsorted array`
 - `unsorted linked list`
 - `sorted circular array`
 - `sorted linked list`
 - `binary search tree`
Need a good data structure!

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for n data items
 - All times worst-case; assume arrays "have room"

<table>
<thead>
<tr>
<th>data</th>
<th>insert algorithm / time</th>
<th>deleteMin algorithm / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsorted array</td>
<td>add at end $O(1)$</td>
<td>search $O(n)$</td>
</tr>
<tr>
<td>unsorted linked list</td>
<td>add at front $O(1)$</td>
<td>search $O(n)$</td>
</tr>
<tr>
<td>sorted circular array</td>
<td>search / shift $O(n)$</td>
<td>move front $O(1)$</td>
</tr>
<tr>
<td>sorted linked list</td>
<td>remove at front $O(1)$</td>
<td>put in right place $O(n)$</td>
</tr>
<tr>
<td>binary search tree</td>
<td>put in right place $O(n)$</td>
<td>leftmost $O(n)$</td>
</tr>
</tbody>
</table>

More on possibilities

- If priorities are random, binary search tree will likely do better
 - $O(\log n)$ insert and $O(\log n)$ deleteMin on average

- But we are about to see a data structure called a "binary heap"
 - $O(\log n)$ insert and $O(\log n)$ deleteMin worst-case
 - Very good constant factors
 - If items arrive in random order, then insert is $O(1)$ on average

- One more idea: if priorities are 0, 1, ..., k can use array of lists
 - insert: add to front of list at $arr[priority]$, $O(1)$
 - deleteMin: remove from lowest non-empty list $O(k)$

Tree terms (review?)

The binary heap data structure implementing the priority queue ADT will be a tree, so worth establishing some terminology

- root(tree)
- children(node)
- parent(node)
- leaves(tree)
- siblings(node)
- ancestors(node)
- descendents(node)
- subtree(node)
- depth(node)
- height(tree)
- degree(node)
- branching factor(tree)

Kinds of trees

Certain terms define trees with specific structure

- Binary tree: Each node has at most 2 children
- n-ary tree: Each node as at most n children
- Complete tree: Each row is completely full except maybe the bottom row, which is filled from left to right

Teaser: Later we’ll learn a tree is a kind of directed graph with specific structure
Our data structure

Finally, then, a binary min-heap (or just binary heap or just heap) is:
- A complete tree – the "structure property"
- For every (non-root) node the parent node’s value is less than the node’s value – the "heap property" (not a binary search tree)

So:
- Where is the highest-priority item?
- What is the height of a heap with \(n \) items?

Operations: basic idea

- **findMin**: return root.data
- **deleteMin**:
 1. answer = root.data
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
- **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

DeleteMin

1. Delete (and return) value at root node

2. **Restore the Structure Property**

- We now have a "hole" at the root
 - Need to fill the hole with another value
- When we are done, the tree will have one less node and must still be complete
3. Restore the Heap Property

Percolate down:
- Keep comparing with both children
- Move smaller child up and go down one level
- Done if both children are \(\geq \) item or reached a leaf node
- What is the run time?

DeleteMin: Run Time Analysis

- Run time is \(O(\text{height of heap}) \)
- A heap is a complete binary tree
- Height of a complete binary tree of \(n \) nodes?
 - \(\text{height} = \lceil \log_2(n) \rceil \)
- Run time of \text{deleteMin} is \(O(\log n) \)

Insert

- Add a value to the tree
- Structure and heap order properties must still be correct afterwards

Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property
Maintain the heap property

Percolate up:
• Put new data in new location
• If parent larger, swap with parent, and continue
• Done if parent ≤ item or reached root
• Run time?

Insert: Run Time Analysis

- Like deleteMin, worst-case time proportional to tree height
 \(- O(\log n)\)

- But... deleteMin needs the “last used” complete-tree position and insert needs the “next to use” complete-tree position
 - If “keep a reference to there” then insert and deleteMin have to adjust that reference: \(O(\log n)\) in worst case
 - Could calculate how to find it in \(O(\log n)\) from the root given the size of the heap
 • But it’s not easy
 • And then insert is always \(O(\log n)\), promised \(O(1)\) on average (assuming random arrival of items)

- There’s a “trick”: don’t represent complete trees with explicit edges!