CSE332: Data Abstractions
Lecture 28: Course Wrap-Up / Victory Lap

Dan Grossman
Spring 2010

Final Exam

As also indicated in class-list email and on the web page:

- Next Tuesday, 2:30-4:20
- Intention is to test a subset of the topics in sorting, graphs, parallelism, concurrency, amortization
 - In other words, “stuff not covered by the midterm”
 - But as always the course topics build on earlier ones
- You will need to read and write Java, among other things
- Dan leaves town tomorrow morning, but will have email
 - Exam and course grades will not be available until June 13-14
 - Homework and project grades available sooner

Victory Lap

A victory lap is an extra trip around the track
 - By the exhausted victors
 (that’s us)

Review course goals
 - Slides from Lecture 1
 - What I told the faculty

Feedback from you on a new course being taught every quarter
 - Anything to discuss as a group
 - Course evaluations
 - Please spend even more time than usual on them

Thank you!

Huge thank-you to your TAs
 - New homeworks, projects, material, libraries
 - Tyler: Use section to teach relevant programming idioms, project 3 guinea pig, teaching the course in summer, …
 - Brent: A cool GUI, project 2 unit-test examples, …
Thank you!

And huge thank you to all of you
 – Great attitude about a new course
 – Good class attendance and questions
 – Occasionally laughed at stuff 😊

Four slides from Lecture 1

We have 10 weeks to learn fundamental data structures and algorithms for organizing and processing information
 – “Classic” data structures / algorithms and how to analyze rigorously their efficiency and when to use them
 – Queues, dictionaries, graphs, sorting, etc.
 – Parallelism and concurrency (new!)

Four slides from Lecture 1

• Introduction to many (not all) of the basic data structures used in computer software
 – Understand the data structures and the trade-offs they make
 – Rigorously analyze the algorithms that use them (math!)
 – Learn how to pick “the right thing for the job”
 – More thorough and rigorous take on topics introduced in 143
 • And more
• Practice design and analysis of data structures / algorithms
• Practice implementing and using these data structures by writing programs
• Experience the purposes and headaches of multithreading

Four slides from Lecture 1

• To be able to make good design choices as a developer, project manager, etc.
 – Reason in terms of the general abstractions that come up in all non-trivial software (and many non-software) systems
• To be able to justify and communicate your design decisions

Dan’s take:
 3 years from now this course will seem like it was a waste of your time because you can’t imagine not “just knowing” every main concept in it
 – Key abstractions computer scientists and engineers use almost every day
 – A big piece of what separates us from others
Four slides from Lecture 1

(Often highly non-obvious) ways to organize information in order to enable efficient computation over that information

- Key goal over the next week is introducing asymptotic analysis to precisely and generally describe efficient use of time and space

A data structure supports certain operations, each with a:
- Meaning: what does the operation do/return
- Performance: how efficient is the operation

Victory Lap

A victory lap is an extra trip around the track
- By the exhausted victors (that’s us)

Review course goals
- Slides from Lecture 1
- What I told the faculty

Feedback from you on a new course being taught every quarter
- Anything to discuss as a group
- Course evaluations
 - Please spend even more time than usual on them

What I told the faculty about CSE332

Catalog Description:

Abstract data types and structures including dictionaries, balanced trees, hash tables, priority queues, and graphs; sorting; asymptotic analysis; fundamental graph algorithms including graph search, shortest path, and minimum spanning trees; concurrency and synchronization; and parallelism.

Goals:
- Deep understanding of core data-structure trade-offs
- Fluency with asymptotic complexity, exponentials, etc.
- Ability to analyze correctness (?) and efficiency
- Recognizing basic opportunities for parallelism
- Addressing challenges of concurrent access to resources

Topics: Data structures + Threads

326 & 332 (20 lectures)
Big-Oh, Algorithm Analysis
Binary Heaps (Priority Qs)
AVL Trees
B Trees
Hashing
Sorting
Graph Traversals
Topological Sort
Shortest Paths
Minimum Spanning Trees
Amortization
Topics: Data structures + Threads

326 & 332 (20 lectures)
Big-O, Algorithm Analysis
Binary Heaps (Priority Qs)
AVL Trees
B Trees
Hashing
Sorting
Graph Traversals
Topological Sort
Shortest Paths
Minimum Spanning Trees
Amortization

Removed from 326 (8 lectures)
D-heaps
Leftist heaps
Skew heaps
Binomial queues
Splay trees
Disjoint sets
Network flow
Hack job on NP (moves to CSE312)

326 & 332 (20 lectures)
Big-O, Algorithm Analysis
Binary Heaps (Priority Qs)
AVL Trees
B Trees
Hashing
Sorting
Graph Traversals
Topological Sort
Shortest Paths
Minimum Spanning Trees
Amortization

Added to 332 (8 lectures)
Multithreading Basics (1)
Fork-Join Parallelism (3)
- Using Java library
- Analysis: T_1 and T_∞
- Amdahl's Law
- Reductions, Prefix, Sorting
Concurrency (4)
- Races, deadlocks
- Locks (mostly)
- Condition variables (a bit)
- Programming guidelines (!)

Spring 2010
CSE332: Data Abstractions

What works

- Triage 30% without killing the patient
 - Plus pretty deep scrub of other 70%
 - Projects use more modern Java (generics, iterators, JUnit)
 - Still keystone course with algorithms, code, proofs, and charts

- Parallelism and concurrency in this course
 - Natural fit (!): same notion of trade-offs, asymptotics
 - Example: Sequential cut-off
 - Example: Bounded buffer for condition variables
 - Example: Amdahl's Law in the limit
 - Data structures & algorithms are canonical examples
 - Divide-and-conquer, atomic operations, etc.
 - All at the Java / pseudocode level

What might not work

- No textbook for the parallelism and concurrency (no complaints?)
- Aimed for “teachable by others,” but never quite sure
- 1.5 / 3 new projects and lots of new slides
 - No disasters, but could use some sanding
- Due to project scheduling, graphs in weeks 6 and 10
- Did not fit: map/reduce, declarative queries
 - Leave to (optional) CSE344
Victory Lap

A victory lap is an extra trip around the track
 – By the exhausted victors
 (that’s us) ☺

Review course goals
 – Slides from Lecture 1
 – What I told the faculty

Feedback from you on a new course being taught every quarter
 – Anything to discuss as a group
 – Course evaluations
 • Please spend even more time than usual on them

Last slide

What do you think was good about 332?

What could be improved?

And:
 Don’t be a stranger: let me know how the rest of your time in CSE (and beyond!) goes… I really do like to know.